8 research outputs found

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    The Kinematic Sunyaev-Zel'dovich Effect with ACT, DES, and BOSS: a Novel Hybrid Estimator

    No full text
    International audienceThe kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8σ{\sigma} and reject the null (no-kSZ) hypothesis at 5.1σ{\sigma}. This corresponds to 2.0σ{\sigma} per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1/5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1σ{\sigma} per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measurements. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone

    Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT

    No full text
    International audienceWe search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 10510^5 clusters with mass and redshift ranges 1013.7<M200m/M⊙<1015.510^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5} and 0.1<z<20.1 < z < 2, and the total sky coverage of the maps is ≈15,000  deg2\approx 15,000 \,\,{\rm deg}^2. We find a clear pressure deficit at R/R200m≈1.1R/R_{\rm 200m}\approx 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ6\sigma significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius

    Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT

    No full text
    International audienceWe search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 10510^5 clusters with mass and redshift ranges 1013.7<M200m/M⊙<1015.510^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5} and 0.1<z<20.1 < z < 2, and the total sky coverage of the maps is ≈15,000  deg2\approx 15,000 \,\,{\rm deg}^2. We find a clear pressure deficit at R/R200m≈1.1R/R_{\rm 200m}\approx 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ6\sigma significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius

    Kinematic Sunyaev-Zel'dovich effect with ACT, DES, and BOSS: a novel hybrid estimator

    No full text
    The kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8σ and reject the null (no-kSZ) hypothesis at 5.1σ. This corresponds to 2.0σ per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1/5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1σ per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measurements. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone. </p

    Cosmological shocks around galaxy clusters: a coherent investigation with DES, SPT &amp; ACT

    No full text
    We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges 1013.7&lt;M200m/M⊙&lt;1015.5 and 0.1&lt;z&lt;2, and the total sky coverage of the maps is ≈15,000deg2. We find a clear pressure deficit at R/R200m≈1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius
    corecore