531 research outputs found

    Web-based alcohol screening and brief intervention for university students: a randomized trial.

    Get PDF
    IMPORTANCE: Unhealthy alcohol use is a leading contributor to the global burden of disease, particularly among young people. Systematic reviews suggest efficacy of web-based alcohol screening and brief intervention and call for effectiveness trials in settings where it could be sustainably delivered. OBJECTIVE: To evaluate a national web-based alcohol screening and brief intervention program. DESIGN, SETTING, AND PARTICIPANTS: A multisite, double-blind, parallel-group, individually randomized trial was conducted at 7 New Zealand universities. In April and May of 2010, invitations containing hyperlinks to the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) screening test were e-mailed to 14,991 students aged 17 to 24 years. INTERVENTIONS: Participants who screened positive (AUDIT-C score ≥4) were randomized to undergo screening alone or to 10 minutes of assessment and feedback (including comparisons with medical guidelines and peer norms) on alcohol expenditure, peak blood alcohol concentration, alcohol dependence, and access to help and information. MAIN OUTCOMES AND MEASURES: A fully automated 5-month follow-up assessment was conducted that measured 6 primary outcomes: consumption per typical occasion, drinking frequency, volume of alcohol consumed, an academic problems score, and whether participants exceeded medical guidelines for acute harm (binge drinking) and chronic harm (heavy drinking). A Bonferroni-corrected significance threshold of .0083 was used to account for the 6 comparisons and a sensitivity analysis was used to assess possible attrition bias. RESULTS: Of 5135 students screened, 3422 scored 4 or greater and were randomized, and 83% were followed up. There was a significant effect on 1 of the 6 prespecified outcomes. Relative to control participants, those who received intervention consumed less alcohol per typical drinking occasion (median 4 drinks [interquartile range {IQR}, 2-8] vs 5 drinks [IQR 2-8]; rate ratio [RR], 0.93 [99.17% CI, 0.86-1.00]; P = .005) but not less often (RR, 0.95 [99.17% CI, 0.88-1.03]; P = .08) or less overall (RR, 0.95 [99.17% CI, 0.81-1.10]; P = .33). Academic problem scores were not lower (RR, 0.91 [99.17% CI, 0.76-1.08]; P = .14) and effects on the risks of binge drinking (odds ratio [OR], 0.84 [99.17% CI, 0.67-1.05]; P = .04) and heavy drinking (OR, 0.77 [99.17% CI, 0.56-1.05]; P = .03) were not significantly significant. In a sensitivity analysis accounting for attrition, the effect on alcohol per typical drinking occasion was no longer statistically significant. CONCLUSIONS AND RELEVANCE: A national web-based alcohol screening and brief intervention program produced no significant reductions in the frequency or overall volume of drinking or academic problems. There remains a possibility of a small reduction in the amount of alcohol consumed per typical drinking occasion. TRIAL REGISTRATION: anzctr.org.au Identifier: ACTRN12610000279022

    Mild Type 2 Diabetes Mellitus Reduces the Susceptibility of the Heart to Ischemia/Reperfusion Injury: Identification of Underlying Gene Expression Changes.

    Get PDF
    Despite clinical studies indicating that diabetic hearts are more sensitive to ischemia/reperfusion injury, experimental data is contradictory. Although mild diabetes prior to ischemia/reperfusion may induce a myocardial adaptation, further research is still needed. Nondiabetic Wistar (W) and type 2 diabetic Goto-Kakizaki (GK) rats (16-week-old) underwent 45 min occlusion of the left anterior descending coronary artery and 24 h reperfusion. The plasma glucose level was significantly higher in diabetic rats compared to the nondiabetics. Diabetes mellitus was associated with ventricular hypertrophy and increased interstitial fibrosis. Inducing myocardial infarction increased the glucose levels in diabetic compared to nondiabetic rats. Furthermore, the infarct size was smaller in GK rats than in the control group. Systolic and diastolic functions were impaired in W + MI and did not reach statistical significance in GK + MI animals compared to the corresponding controls. Among the 125 genes surveyed, 35 genes showed a significant change in expression in GK + MI compared to W + MI rats. Short-term diabetes promotes compensatory mechanisms that may provide cardioprotection against ischemia/reperfusion injury, at least in part, by increased antioxidants and the upregulation of the prosurvival PI3K/Akt pathway, by the downregulation of apoptotic genes, proinflammatory cytokine TNF-alpha, profibrogenic TGF-beta, and hypertrophic marker alpha-actin-1

    Linked 3-D modelling of megathrust earthquake-tsunami events: from subduction to tsunami run up

    Get PDF
    How does megathrust earthquake rupture govern tsunami behaviour? Recent modelling advances permit evaluation of the influence of 3-D earthquake dynamics on tsunami genesis, propagation, and coastal inundation. Here, we present and explore a virtual laboratory in which the tsunami source arises from 3-D coseismic seafloor displacements generated by a dynamic earthquake rupture model. This is achieved by linking open-source earthquake and tsunami computational models that follow discontinuous Galerkin schemes and are facilitated by highly optimized parallel algorithms and software. We present three scenarios demonstrating the flexibility and capabilities of linked modelling. In the first two scenarios, we use a dynamic earthquake source including time-dependent spontaneous failure along a 3-D planar fault surrounded by homogeneous rock and depth-dependent, near-lithostatic stresses. We investigate how slip to the trench influences tsunami behaviour by simulating one blind and one surface-breaching rupture. The blind rupture scenario exhibits distinct earthquake characteristics (lower slip, shorter rupture duration, lower stress drop, lower rupture speed), but the tsunami is similar to that from the surface-breaching rupture in run-up and length of impacted coastline. The higher tsunami-generating efficiency of the blind rupture may explain how there are differences in earthquake characteristics between the scenarios, but similarities in tsunami inundation patterns. However, the lower seafloor displacements in the blind rupture result in a smaller displaced volume of water leading to a narrower inundation corridor inland from the coast and a 15 per cent smaller inundation area overall. In the third scenario, the 3-D earthquake model is initialized using a seismo-thermo-mechanical geodynamic model simulating both subduction dynamics and seismic cycles. This ensures that the curved fault geometry, heterogeneous stresses and strength and material structure are consistent with each other and with millions of years of modelled deformation in the subduction channel. These conditions lead to a realistic rupture in terms of velocity and stress drop that is blind, but efficiently generates a tsunami. In all scenarios, comparison with the tsunamis sourced by the time-dependent seafloor displacements, using only the time-independent displacements alters tsunami temporal behaviour, resulting in later tsunami arrival at the coast, but faster coastal inundation. In the scenarios with the surface-breaching and subduction-initialized earthquakes, using the time-independent displacements also overpredicts run-up. In the future, the here presented scenarios may be useful for comparison of alternative dynamic earthquake-tsunami modelling approaches or linking choices, and can be readily developed into more complex applications to study how earthquake source dynamics influence tsunami genesis, propagation and inundation

    Differing responses of red abalone (Haliotis rufescens) and white abalone (H. sorenseni) to infection with phage-associated Candidatus Xenohaliotis californiensis

    No full text
    The Rickettsiales-like prokaryote and causative agent of Withering Syndrome (WS)—Candidatus Xenohaliotis californiensis (Ca. Xc)—decimated black abalone populations along the Pacific coast of North America. White abalone—Haliotis sorenseni—are also susceptible to WS and have become nearly extinct in the wild due to overfishing in the 1970s. Candidatus Xenohaliotis californiensis proliferates within epithelial cells of the abalone gastrointestinal tract and causes clinical signs of starvation. In 2012, evidence of a putative bacteriophage associated with Ca. Xc in red abalone—Haliotis rufescens—was described. Recently, histologic examination of animals with Ca. Xc infection in California abalone populations universally appear to have the phage-containing inclusions. In this study, we investigated the current virulence of Ca. Xc in red abalone and white abalone at different environmental temperatures. Using a comparative experimental design, we observed differences over time between the two abalone species in mortality, body condition, and bacterial load by quantitative real time PCR (qPCR). By day 251, all white abalone exposed to the current variant of Ca. Xc held in the warm water (18.5 °C) treatment died, while red abalone exposed to the same conditions had a mortality rate of only 10%, despite a relatively heavy bacterial burden as determined by qPCR of posterior esophagus tissue and histological assessment at the termination of the experiment. These data support the current status of Ca. Xc as less virulent in red abalone, and may provide correlative evidence of a protective phage interaction. However, white abalone appear to remain highly susceptible to this disease. These findings have important implications for implementation of a white abalone recovery program, particularly with respect to the thermal regimes of locations where captively-reared individuals will be outplanted

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment

    GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma

    Get PDF
    The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability

    Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillus strains

    Get PDF
    The application of biocontrol biopesticides based on plant growth–promoting rhizobacteria (PGPR), particularly members of the genus Bacillus, is considered a promising perspective to make agricultural practices sustainable and ecologically safe. Recent advances in genome sequencing by third-generation sequencing technologies, e.g., Pacific Biosciences’ Single Molecule Real-Time (PacBio SMRT) platform, have allowed researchers to gain deeper insights into the molecular and genetic mechanisms of PGPR activities, and to compare whole genome sequences and global patterns of epigenetic modifications. In the current work, this approach was used to sequence and compare four Bacillus strains that exhibited various PGPR activities including the strain UCMB5140, which is used in the commercial biopesticide Phytosubtil. Whole genome comparison and phylogenomic inference assigned the strain UCMB5140 to the species Bacillus velezensis. Strong biocontrol activities of this strain were confirmed in several bioassays. Several factors that affect the evolution of active PGPR B. velezensis strains were identified: (1) horizontal acquisition of novel non-ribosomal peptide synthetases (NRPS) and adhesion genes; (2) rearrangements of functional modules of NRPS genes leading to strain specific combinations of their encoded products; (3) gain and loss of methyltransferases that can cause global alterations in DNA methylation patterns, which eventually may affect gene expression and regulate transcription. Notably, we identified a horizontally transferred NRPS operon encoding an uncharacterized polypeptide antibiotic in B. velezensis UCMB5140. Other horizontally acquired genes comprised a possible adhesin and a methyltransferase, which may explain the strain-specific methylation pattern of the chromosomal DNA of UCMB5140.The South African National Research Foundation (NRF), the joint NRF/COSTECH (Tanzanian Commission for Science and Technology), joint TIA (Technology Innovation Agency of South Africa)/COSTECHPhD and MSc student fellowship grants from Southern African Biochemistry and Informatics for Natural Products (SABINA, http://www.sabina-africa.org/) and Agroscope through its research program Microbial Biodiversity.http://link.springer.com/journal/2532021-07-10hj2020BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog
    corecore