28 research outputs found

    Passive transfer of fibromyalgia symptoms from patients to mice

    Get PDF
    Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia

    Impaired Nociception in the Diabetic <i>Ins2<sup>+/Akita</sup></i> Mouse

    Get PDF
    The mechanisms responsible for painful and insensate diabetic neuropathy are not completely understood. Here, we have investigated sensory neuropathy in the Ins2+/Akita mouse, a hereditary model of diabetes. Akita mice become diabetic soon after weaning, and we show that this is accompanied by an impaired mechanical and thermal nociception and a significant loss of intraepidermal nerve fibers. Electrophysiological investigations of skin-nerve preparations identified a reduced rate of action potential discharge in Ins2+/Akita mechanonociceptors compared with wild-type littermates, whereas the function of low-threshold A-fibers was essentially intact. Studies of isolated sensory neurons demonstrated a markedly reduced heat responsiveness in Ins2+/Akita dorsal root ganglion (DRG) neurons, but a mostly unchanged function of cold-sensitive neurons. Restoration of normal glucose control by islet transplantation produced a rapid recovery of nociception, which occurred before normoglycemia had been achieved. Islet transplantation also restored Ins2+/Akita intraepidermal nerve fiber density to the same level as wild-type mice, indicating that restored insulin production can reverse both sensory and anatomical abnormalities of diabetic neuropathy in mice. The reduced rate of action potential discharge in nociceptive fibers and the impaired heat responsiveness of Ins2+/Akita DRG neurons suggest that ionic sensory transduction and transmission mechanisms are modified by diabetes

    TRPM8 is a neuronal osmosensor that regulates eye blinking in mice

    Get PDF
    Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8 / mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8 / compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice

    The role of NK and NKT cells in the pathogenesis and improvement of multiple sclerosis following disease-modifying therapies

    No full text
    Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) that T cells become autoreactive by recognizing CNS antigens. Both innate and adaptive immune systems are involved in the pathogenesis of MS. In recent years, the impact of innate immune cells on MS pathogenesis has received more attention. CD56(bright) NK cells, as an immunoregulatory subset of NK cells, can increase the production of cytokines that modulate adaptive immune responses, whereas CD56(dim) NK cells are more active in cytolysis functions. These two main subsets of NK cells may have different effects on the onset or progression of MS. Invariant NKT (iNKT) cells are other immune cells involved in the control of autoimmune diseases; however, variant NKT (vNKT) cells, despite limited information, could play a role in MS remission via an immunoregulatory pathway. Aim We aimed to evaluate the influence of MS therapeutic agents on NK and NKT cells and NK cell subtypes. Materials and Methods The possible mechanism of each MS therapeutic agent has been presented here, focusing on the effects of different disease-modifying therapies on the number of NK and NKT subtypes. Results Expansion of CD56(bright) NK cells, reduction in the CD56(dim) cells, and enhancement in NKT cells are the more important innate immune cells alterations following the disease-modifying therapies. Conclusion Expansion of CD56(bright) NK cells or reduction in the CD56(dim) cells has been associated with a successful response to different treatments in MS. iNKT and vNKT cells could have beneficial effects on MS improving. It seems that they are enhanced due to some of MS drugs, leading to disease improvement. However, a reduction in the number of NKT cells could be due to the adverse effects of some of MS drugs on the bone marrow
    corecore