236 research outputs found

    Temperature measurement and stabilization in a birefringent whispering gallery resonator

    Full text link
    Temperature measurement with nano-Kelvin resolution is demonstrated at room temperature, based on the thermal dependence of an optical crystal anisotropy in a high quality whispering gallery resonator. As the resonator's TE and TM modes frequencies have different temperature coefficients, their differential shift provides a sensitive measurement of the temperature variation, which is used for active stabilization of the temperature

    Phase Measurement for Driven Spin Oscillations in a Storage Ring

    Get PDF
    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched 0.97GeV/c0.97\,\textrm{GeV/c} deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles

    Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Get PDF
    Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called \textit{spin tune mapping}, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 at the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8μ2.8\murad.Comment: 32 pages, 15 figures, 7 table

    Phase locking the spin precession in a storage ring

    Get PDF
    This letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/cc bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (121\approx 121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a one standard deviation range of σ=0.21\sigma = 0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles

    Topology of the spaces of Morse functions on surfaces

    Full text link
    Let MM be a smooth closed orientable surface, and let FF be the space of Morse functions on MM such that at least χ(M)+1\chi(M)+1 critical points of each function of FF are labeled by different labels (enumerated). Endow the space FF with CC^\infty-topology. We prove the homotopy equivalence FR×M~F\sim R\times{\widetilde{\cal M}} where RR is one of the manifolds RP3{\mathbb R}P^3, S1×S1S^1\times S^1 and the point in dependence on the sign of χ(M)\chi(M), and M~{\widetilde{\cal M}} is the universal moduli space of framed Morse functions, which is a smooth stratified manifold. Morse inequalities for the Betti numbers of the space FF are obtained.Comment: 15 pages, in Russia

    Search for the Flavor-Changing Neutral Current Decay D0μ+μD^0 \to \mu^+\mu^- with the HERA-B Detector

    Get PDF
    We report on a search for the flavor-changing neutral current decay D0μ+μD^0 \to \mu^+\mu^- using 50×10650 \times 10^6 events recorded with a dimuon trigger in interactions of 920 GeV protons with nuclei by the HERA-B experiment. We find no evidence for such decays and set a 90% confidence level upper limit on the branching fraction Br(D0μ+μ)<2.0×106Br(D^0 \to \mu^+\mu^-) <2.0 \times 10^{-6}.Comment: 17 pages, 4 figures (of which 1 double), paper to be submitted to Physics Letters
    corecore