173 research outputs found

    Investigations in fast neutron spectrometry

    Get PDF

    Multi-color Cavity Metrology

    Get PDF
    Long baseline laser interferometers used for gravitational wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by four orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational wave detector. The possibility for using multi-color techniques to overcome current quantum and thermal noise limits is also discussed

    Non-intrusive assessment of photosystem II and photosystem I in whole coral tissues

    Get PDF
    © 2017 Szabó, Larkum, Suggett, Vass, Sass, Osmond, Zavafer, Ralph and Chow. Reef building corals (phylum Cnidaria) harbor endosymbiotic dinoflagellate algae (genus Symbiodinium) that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl) fluorescence analyses of Photosystem II (PSII) have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR) region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700) and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf). Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33◦ C for~20 min), the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ) pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv /Fm ) and functional absorption cross-section of PSII (σPSII ) remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of the integrity of PSII-PSI electron transfer dynamics in corals

    Institutions and social structures

    Get PDF
    This paper clarifies the terms "institutions" and "social structures" and related terms "rules", "conventions", "norms", "values" and "customs". Part one explores the similarities between institutions and social structures whilst the second and third parts explore differences. Part two considers institutions, rules, habits or habitus and habituation, whilst part three critically reflects on three common conceptions of social structures. The conclusion comments upon reflexive deliberation via the internal conversation. © The Executive Management Committee/Blackwell Publishing Ltd. 2008

    Long-Lived Foams Stabilized by a Hydrophobic Dipeptide Hydrogel

    Get PDF
    A hydrogel of hydrophobic dipeptides can be used to create a wet foam with long-term stability. The dipeptide molecules self-assemble into fiber-like networks (due to the presence of metal ions) both at air–water interfaces and in the continuous phase. The former creates an interfacial film stabilizing the air bubbles while the latter forms a bulk gel, which prevents bubble movement and retards growth. If the storage modulus (G′) of the bulk hydrogel is sufficiently high it can stop the coarsening of the air bubbles and thus dramatically improve the stability of the foam. Cryogenic scanning electron microscopy and Raman spectra reveals the width of the fibers (200 nm) and that they are held together by hydrogen bonds. In the absence of bubbles, phase separation is observed between a hydrogel and a water-rich phase; in the foam this can be suppressed provided that the concentration of dipeptides and metal ions are sufficiently high. It is speculated that the resistance of the bubble arrangement to compaction and hence further drainage arrests the process of phase separation. This foam system has the advantages of long stability, low cost, as well as easy preparation; therefore, it has potential applications in food manufacturing, drug delivery, and personal care industries

    Laser Wake Field Collider

    Get PDF
    Recently NAno-Plasmonic, Laser Inertial Fusion Experiments (NAPLIFE) were proposed, as an improved way to achieve laser driven fusion. The improvement is the combination of two basic research discoveries: (i) the possibility of detonations on space-time hyper-surfaces with time-like normal (i.e. simultaneous detonation in a whole volume) and (ii) to increase this volume to the whole target, by regulating the laser light absorption using nanoshells or nanorods as antennas. These principles can be realized in a one dimensional configuration, in the simplest way with two opposing laser beams as in particle colliders. Such, opposing laser beam experiments were also performed recently. Here we study the consequences of the Laser Wake Field Acceleration (LWFA) if we experience it in a colliding laser beam set-up. These studies can be applied to laser driven fusion, but also to other rapid phase transition, combustion, or ignition studies in other materials.publishedVersio

    A Tractable Stochastic Model of Correlated Link Failures Caused by Disasters

    Get PDF
    In order to evaluate the expected availability of a service, a network administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single link failures is often insufficient. In this paper, we build a stochastic model of geographically correlated link failures caused by disasters, in order to estimate the hazards a network may be prone to, and to understand the complex correlation between possible link failures. With such a model, one can quickly extract information, such as the probability of an arbitrary set of links to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a failure, etc. Furthermore, we introduce a pre-computation process, which enables us to succinctly represent the joint probability distribution of link failures. In particular, we generate, in polynomial time, a quasilinear-sized data structure, with which the joint failure probability of any set of links can be computed efficiently.Embedded and Networked System

    Non-intrusive assessment of photosystem II and photosystem I in whole coral tissues

    Get PDF
    Reef building corals (phylum Cnidaria) harbor endosymbiotic dinoflagellate algae (genus Symbiodinium) that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl) fluorescence analyses of Photosystem II (PSII) have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR) region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700) and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf). Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33°C for ~20 min), the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ) pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv/Fm) and functional absorption cross-section of PSII (σPSII) remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of the integrity of PSII-PSI electron transfer dynamics in corals.This work was supported by the award of Australian Research Council Discovery Project (ARC DP120101360) to WC and Future Fellowship (FT130100202) to DS. IV and LS were partly supported by a grant from the Hungarian National Research, Development and Innovation Office (NN110960

    Probabilistic Shared Risk Link Groups Modeling Correlated Resource Failures Caused by Disasters

    Get PDF
    To evaluate the expected availability of a backbone network service, the administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single component failures is often insufficient. This paper builds a stochastic model of geographically correlated link failures caused by disasters to estimate the hazards an optical backbone network may be prone to and to understand the complex correlation between possible link failures. We first consider link failures only and later extend our model also to capture node failures. With such a model, one can quickly extract essential information such as the probability of an arbitrary set of network resources to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a disaster. Furthermore, we introduce standard data structures and a unified terminology on Probabilistic Shared Risk Link Groups (PSRLGs), along with a pre-computation process, which represents the failure probability of a set of resources succinctly. In particular, we generate a quasilinear-sized data structure in polynomial time, which allows the efficient computation of the cumulative failure probability of any set of network elements. Our evaluation is based on carefully pre-processed seismic hazard data matched to real-world optical backbone network topologies.Accepted author manuscriptEmbedded and Networked System
    corecore