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Abstract 

Little is known about the drivers of critically important antibacterial resistance in 

species with zoonotic potential present on farms (e.g. CTX-M ꞵ-lactamase-positive 

Escherichia coli). We collected samples – monthly, between January 2017 and 

December 2018 - on 53 dairy farms in South West England along with data for 610 

variables concerning antibacterial usage, management practices and meteorological 

factors. We detected E. coli resistant to amoxicillin, ciprofloxacin, streptomycin and 

tetracycline, respectively, in 2754/4145 (66%), 263/4145 (6%), 1475/4145 (36%) and 

2874/4145 (69%) of all samples from faecally contaminated on-farm and near-farm 

sites. E. coli positive for blaCTX-M were detected in 224/4145 (5.4%) of samples. 

Multilevel, multivariable logistic regression showed antibacterial dry cow therapeutic 

choice (including use of cefquinome or framycetin) to be associated with higher odds 

of blaCTX-M positivity. Low average monthly ambient temperature was associated with 

lower odds of blaCTX-M E. coli positivity in samples and with lower odds of finding E. 

coli resistant to each of the four test antibacterials. This was additional to the effect 

of temperature on total E. coli density. Furthermore, samples collected close to 

calves had higher odds of having E. coli resistant to each antibacterial as well as 

positive for blaCTX-M. Samples collected on pastureland had lower odds of having E. 

coli resistant to amoxicillin or tetracycline as well as lower odds of being positive for 

blaCTX-M.  

Importance 

Antibacterial resistance poses a significant threat to human and animal health and 

global food security. Surveillance for resistance on farms is important for many 

reasons, including to track the impacts of interventions aimed at reducing the 
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prevalence of resistance. In this longitudinal survey of dairy farm antibacterial 

resistance, we showed that local temperature - as it changes over the course of a 

year - was associated with the prevalence of antibacterial-resistant E. coli. We also 

showed that prevalence of resistant E. coli was lower on pastureland and higher in 

environments inhabited by young animals. These findings have profound 

implications for routine surveillance and for surveys carried out for research. They 

provide important evidence that sampling at a single time-point and/or single location 

on a farm is unlikely to be adequate to accurately determine the status of the farm 

regarding the presence of samples containing resistant E. coli.  
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Introduction 

Antimicrobial resistance - and particularly antibacterial resistance (ABR) - is a 

significant global challenge. Many countries are implementing plans to reduce the 

use of antibacterial drugs (ABs) in food-producing animals. For example, the most 

recent UK five-year National Action Plan includes a target to reduce AB use (ABU) in 

the treatment of food-producing animals by 25% (1). In Europe, AB sales for food-

producing animals fell by 20% from 2011 to 2016 (2). In the UK dairy industry, 

overall ABU dropped from 24 mg/kg in 2015 to 17 mg/kg in 2018 (3, 4). In 2018, 

additional industry-led policies were enforced in the UK that aimed to almost 

eliminate the use of highest-priority critically important antimicrobials (HP-CIAs) such 

as third- and fourth-generation cephalosporins (3GCs and 4GCs) as well as 

fluoroquinolones on dairy farms. One reason for reducing ABU in farming is to 

reduce the prevalence of ABR bacteria carried by farm animals. However, there is a 

need for better data on drivers of ABR in farming. More granularity of understanding 

is required concerning the risks of using individual ABs and other management 

practices. This is especially important in terms of drivers of HP-CIA resistance. A 

focus within HP-CIAs is on 3GC and fluoroquinolone resistance in Escherichia coli, a 

species commonly found in animal faeces and considered one of the most significant 

potential zoonotic ABR threats to humans (5). 

3GC resistance is increasingly prevalent in E. coli causing infections in humans (6) 

and is also found in farmed and domestic animals around the world (7). The 

production of CTX-M (an extended-spectrum ꞵ-lactamase) is the most common 

mechanism of 3GC resistance in E. coli in humans in the UK; for example, in a 

recent study of urinary E. coli from humans in South West England, 82.2% of 3GC-

resistant isolates carried blaCTX-M (8). 
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The objective of this study was to describe the prevalence of 3GC-resistant E. coli 

carrying blaCTX-M as well as E. coli resistant to amoxicillin, tetracycline, streptomycin 

and the fluoroquinolone ciprofloxacin found in faecally contaminated environments of 

dairy cattle in a geographically restricted population of dairy farms in South West 

England. These are, or represent, ABs widely used on dairy farms in the UK (3, 4). 

Furthermore, this study investigated environmental, ABU and management practice 

risk factors for the presence of such E. coli. 

 

Results  

Prevalence and PCR characterisation of 3GC-resistant E. coli from dairy farms 

4581 samples were collected from faecally contaminated sites on 53 dairy farms. 

Samples were collected on each farm monthly between January 2017 and December 

2018. 4145 samples were positive for growth of E. coli on non-selective agar. Of these, 

384/4145 (9.3%) samples representing 47/53 (88.7%) of farms were positive for 

growth of E. coli on agar containing the 3GC cefotaxime. From these, 1226 3GC-

resistant isolates were taken forward for PCR testing for possible cephalosporinase 

genes of interest (GOIs): blaCTX-M (groups 1, 2, 8, 9 and 25), blaCMY, blaDHA and blaSHV. 

Over half (648/1226; 52.7%) of all isolates tested were found to harbour blaCTX-M 

genes. Of these, 547/648 (84.4%) were of group 1, 99/648 (15.3%) were of group 9, 

and, in one case, both gene groups were identified. Twelve isolates harboured a 

blaCMY gene – one alongside blaCTX-M group 1 – and one isolate was blaDHA-1-positive. 

No isolates were positive for blaSHV and the remaining 566/1226 (46.2%) isolates were 

PCR-negative for all GOIs. These isolates were hypothesised to hyper-produce the 
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chromosomally encoded AmpC β-lactamase; some of these isolates have been 

characterised in detail in a separate study (9). 

 

Farm- and sample-level risk factors for blaCTX-M E. coli positivity 

Based on PCR, carriage of blaCTX-M was the most common mechanism of 3GC-

resistance in E. coli from dairy farms in this study. Identifying management practice- 

and AMU-associated risk factors for blaCTX-M E. coli positivity was therefore 

considered to be an important objective. Overall, 5.4% (224/4145) of samples 

representing 42/53 (79.2%) of farms contained 3GC-resistant E. coli confirmed to 

carry blaCTX-M using PCR. Positivity for blaCTX-M E. coli was three times higher in 

samples collected from the environments of calves (Calf samples; 98/631 [15.5%] of 

samples) than overall (Table 1). 

Given the high positivity rate for blaCTX-M E. coli in Calf samples, a separate risk 

factor analysis using only Calf data was performed. One farm-level fixed effect and 

three sample-level fixed effects were retained in the final multilevel, multivariable 

logistic regression model (Table S1, Table 2). The use of cefquinome or framycetin 

dry cow therapies were both associated with higher odds of blaCTX-M E. coli positivity, 

as was higher average monthly temperature. Plotting sample-level positivity for E. 

coli carrying blaCTX-M versus average monthly temperature revealed that the 

relationship between positivity and temperature was primarily driven by low blaCTX-M 

E. coli positivity rates in months where the average temperature was below 10°C 

(Figure 1A). 

Risk factor analysis was also performed for the full dataset. One farm-level fixed 

effect and three sample-level fixed effects were retained in the final model (Table 
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S2, Table 3). Interestingly, this model revealed that blaCTX-M E. coli was less likely to 

be found in samples obtained from pastureland, which included publicly accessible 

farmland (Footpaths) compared with other sample types. Analysis of the full dataset 

confirmed what was seen with the Calf dataset: higher average monthly temperature 

was associated with a higher odds of blaCTX-M E. coli positivity. Again, visualisation of 

the data confirmed that this was primarily driven by a reduction in blaCTX-M E. coli 

positivity rate in months with an average temperature below 10°C (Figure 1B). 

Strikingly, farm-level positivity for blaCTX-M E. coli at the sequential monthly sampling 

visits was higher in warmer months and lower in the coldest month (Figure 2A). 

A Bayesian logistic regression model was also constructed in which the effect of total 

farm ABU and specifically total 3GC and 4GC use were tested as predictors for 

blaCTX-M E. coli positivity in the total dataset, with 102 potential predictors included. 

The impact of temperature (odds ratio 1.71 [1.42, 2.05]) on blaCTX-M E. coli positivity 

was also retained in this alternative model (Table S3). 

Defining sample-level positivity for blaCTX-M E. coli is dependent upon finding blaCTX-M 

using PCR in E. coli colonies that have grown on agar containing cefotaxime. If 

blaCTX-M E. coli in a sample exist at such a low density that they are not detected 

using selective agar, the sample will be falsely identified as negative for blaCTX-M E. 

coli. This impact of bacterial density on assay sensitivity is an important 

consideration in the context of the finding that blaCTX-M positivity is low at low 

temperatures. To account for this, the logistic link function was adjusted (see 

Supplementary). This only modestly altered the effect sizes and the p-values for the 

risk factors (Figure S1), confirming that the effect of low temperature on blaCTX-M E. 

coli positivity was additional to its effect on E. coli prevalence. All values in Tables 2 

and 3 come from models with this adjusted logistic link function applied.  
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Prevalence and risk factor analysis for E. coli resistant to other antibacterial 

classes 

All 4145 samples positive for growth of E. coli on non-selective agar were also tested 

for detectable numbers of E. coli resistant to four non-cephalosporins: amoxicillin, 

tetracycline, streptomycin, and ciprofloxacin, the last being representative of the HP-

CIA class, the fluoroquinolones. Resistance to amoxicillin and tetracycline were the 

most prevalent types of resistance found, with ciprofloxacin resistance being the 

least commonly detected (Table 4).  

Using a Bayesian logistic regression method, factors associated with the risk of a 

sample being positive for E. coli resistant to each of the test ABs were identified from 

the total dataset. As seen for blaCTX-M E. coli, where and when the samples were 

collected were more consistently associated with the odds of finding resistant E. coli 

in a sample than farm-level management practices or ABU, with all four models 

showing a positive association between average monthly temperature and the odds 

of finding resistant E. coli in a sample (Table 5). Also consistent across all models 

was the significance of sampling different areas of the farm. Again, as with blaCTX-M 

E. coli, samples from the environments of calves were more likely to harbour E. coli 

resistant to all four ABs than samples collected elsewhere on the farm. Samples 

collected from pastureland were, like blaCTX-M E. coli, negatively associated with the 

presence of amoxicillin and tetracycline resistance (Table 5).  

Full results for all variables tested can be found in Table S4. Re-running the models 

with sceptical priors did not affect the results; only very small differences in the 

model coefficients were observed (Table S5).  
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Discussion 

Prevalence of blaCTX-M positive E. coli 

This study is unique in its scale: extensive management practice and ABU data 

along with multiple samples from multiple farms were collected monthly over a two-

year period. Overall, 224/4145 (5.4%) of samples were positive for E. coli carrying 

blaCTX-M. This is similar to previously calculated blaCTX-M E. coli carriage of 

approximately 7% in Danish slaughter pigs (10) and 3.6% in UK broiler chickens and 

turkeys (11). Various studies have identified much higher prevalence in chicken 

meat, but this could be due to cross-contamination at slaughter and in the food chain 

(12, 13). 

Studies examining the prevalence of blaCTX-M E. coli in human populations have 

shown mixed results. A prevalence of 65.7% was found amongst commensal 

isolates in Thailand (14). In the UK, a study across four regions reported commensal 

faecal carriage of blaCTX-M E. coli to be approximately 7% (15). A recent analysis of 

human urinary samples from the same region as the farms surveyed in this study 

gave a sample-level prevalence of blaCTX-M E. coli of approximately 5% (8). It should 

be noted that all farm samples in the present study were from faecally contaminated 

sites, not individual animals, and so it is possible that the number of animals carrying 

blaCTX-M E. coli was much lower than the reported sample-level prevalence. Direct 

comparison with human and other farm animal carriage studies should therefore be 

made with caution. 
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Impact of temperature on the odds of finding resistant and blaCTX-M-positive E. 

coli  

This study found 42/53 (79%) of farms to be positive for blaCTX-M E. coli, based on 

phenotypic analysis and PCR. This was higher than seen in other studies using 

similar methodology; for instance, 17/48 (35%) of randomly selected UK dairy farms 

(16) and 5/25 (20%) of farms in Ohio (17) have been previously shown to be 

positive. In the present study, samples were collected each month over two years, 

hence the chances of finding a positive sample on each farm may have been greater 

than in these earlier point-prevalence studies (16,17). When farm-level positivity for 

blaCTX-M E. coli was plotted on a month-by-month basis (Figure 2A), the highest 

prevalence for a single monthly survey was 22.5%, which fits more closely with these 

other studies.  

Sample-level prevalence of blaCTX-M E. coli was low overall (5.4%). This contrasts 

with >90% (18) or 50% (19) of blaCTX-M E. coli in samples taken from bovine faecal 

pats. This difference could be because these earlier studies used enrichment culture 

prior to testing for resistance at sample level, which increases the chances of finding 

resistance at sample level. Another explanation for the difference, is the large 

number of samples collected in the present study, particularly over winter, given low 

temperature was associated with low blaCTX-M E. coli positivity (Fig. 1A; 1B). Indeed, 

the observation that average monthly temperature had a significant effect on blaCTX-M 

E. coli positivity (Table 3), as well as positivity for resistance to amoxicillin, 

ciprofloxacin, streptomycin, and tetracycline (Table 5) highlights problems with 

studies where a single time-point or sampling season is used. Figure 2 shows the 

stark impact of this in real terms: blaCTX-M E. coli positivity and positivity for 
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ciprofloxacin-resistant E. coli at farm level was zero in February, the coldest month of 

the year (based on average temperature; Fig 2A, B). 

Whilst average annual temperature found at locations across an entire continent has 

previously been shown to impact average ABR levels at those locations (20), the 

finding that periods of low temperatures were associated with lower prevalence of a 

dominant cause of ABR - and particularly HP-CIA resistance at a given location 

during the course of a year - is particularly important. This observation also leads to 

concern about the impact of climate change - and especially increasing temperatures 

- on attempts to reduce ABR. Whilst temperature was associated with the total 

number of E. coli found in each sample, this was accounted for using a 

measurement error method incorporated into the model; as such, the effect of 

temperature on ABR or blaCTX-M-positive E. coli, whilst in part driven by the effect on 

total E. coli number, also had an independent association suggestive of a 

temperature-dependent fitness burden of resistance. 

 

High levels of ABR and blaCTX-M positive E. coli in farm locations dominated by 

young animals and low levels on pastureland 

There were clear differences in the risk of encountering blaCTX-M E. coli at different 

sites on a farm (e.g., 15.5% in Calf samples, 4.1% in Adult samples). The Calf 

environment was also much more likely to have E. coli resistant to amoxicillin, 

tetracycline, streptomycin, and ciprofloxacin, so this seems to be a universal effect. 

Other studies have also generally found high levels of resistance in samples 

collected from or in the environment of younger calves (21-24). There may also be 

an association with temperature here since calves are generally kept in warmer 
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environments than are adult cows but may also be due to some physiological 

change with age. 

This study also identified a lower odds of detecting blaCTX-M E. coli in samples 

collected on pastureland compared with those collected elsewhere on the farm. This 

relationship also held for E. coli resistant to amoxicillin and tetracycline. Because 

pastureland may be more affected by the elements, this finding may be partly linked 

with the association between temperature and ABR. 

 

AB contamination of colostrum as a possible driver of blaCTX-M E. coli positivity 

in dairy calves - evidence of direct and co-selection 

Our analysis identified a small number of specific risk factors. There was an 

association between calf water trough cleaning and lower odds of Calf samples 

having E. coli with blaCTX-M (Table 2). Whilst there are many reasons for providing 

the cleanest possible drinking water, this was not seen for other ABR phenotypes 

and it is unclear why this association was identified. Furthermore, feeding maize 

silage was associated with a higher odds of finding blaCTX-M-positive E. coli across 

the whole dataset (Table 3). It would be interesting to take samples of silage and to 

test if resistant E. coli survive better in this type of medium, but again this association 

was not seen for other resistance phenotypes. There were also associations 

between the odds of finding tetracycline-resistant E. coli and ABU, calving and 

rainfall (Table 5).  

The most interesting AB-related association found was specifically for Calf samples. 

It has been shown experimentally that feeding waste (AB-contaminated) milk to 

calves increases faecal excretion of ABR bacteria (25). This practice is reducing on 

UK dairy farms and, in the analysis presented here, waste milk feeding was not 
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associated with an increased risk of finding ABR or blaCTX-M positive E. coli. In 

contrast, the choice of dry cow therapy (an AB preparation inserted into a cow’s 

udder between lactations to help treat or prevent mastitis) was associated with 

blaCTX-M E. coli positivity in Calf samples (Table 2). It has previously been shown that 

colostrum from cows given cefquinome dry cow therapy is heavily contaminated with 

cefquinome (26), and colostrum management is a hugely important part of early life 

for most farmed mammals and is universally encouraged in dairy farming. In this 

study, cefquinome (a 4GC) dry cow therapy was most significantly associated with 

blaCTX-M E. coli in Calf samples (Table 2). This can be explained by direct selection 

because production of CTX-M confers 4GC resistance in E. coli (27). There was also 

a clear positive association between the usage of framycetin as part of a dry cow 

therapy combination and the odds of finding blaCTX-M E. coli in Calf samples (Table 

2). Whilst no work has been published on the contamination of colostrum with 

framycetin, its use as a mastitis therapy for milking cows leads to identifiable 

residues in milk (28), so it is highly likely to also contaminate colostrum. It is 

possible, therefore, that feeding of colostrum - which can be contaminated with AB 

used for dry cow therapy - is a driver of blaCTX-M E. coli in calves. An alternative (or 

indeed an additional) explanation for this observed association is that E. coli (a 

species known to be found in the udders of dairy cows [29]) that carry blaCTX-M are 

selected within the udder during AB dry cow therapy and contaminate colostrum 

alongside the AB used. Others (16) have also identified overall use of 3/4GCs as a 

risk factor for blaCTX-M E. coli presence on dairy farms but have not made a link 

between the usage of framycetin and prevalence of blaCTX-M E. coli. However, it is 

not always clear whether other studies have separated out different dry cow 

therapies since they have tended to focus on systemic AB use. Clearly, an 
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aminoglycoside like framycetin cannot directly select for blaCTX-M E. coli, but 

aminoglycoside resistance genes are common on plasmids (30), as is blaCTX-M (27). 

Hence, this may be an example of co-selection, where selection of resistance to one 

antibacterial class increases resistance to another. 

 

Conclusions 

Overall, we provide important evidence that sampling at single time-points and/or 

limited locations on a farm are unlikely to be adequate to accurately determine the 

status of the farm concerning the prevalence of ABR E. coli. This makes 

comparisons between surveillance studies on farms - designed for research or for 

regulatory purposes - extremely difficult, and we urge for a standardised, multi-

sample framework accounting for the differential risk factors identified here to be 

used in the design of future studies.  



 

15 
 

Materials and Methods 

Farm recruitment and ethical approval 

A convenience sample of 53 dairy farms was recruited through personal contacts, 

local veterinary practices, and milk processors. These represented a variety of dairy 

management systems, ranging from seasonally calving extensively managed herds 

to zero-grazed intensive systems. Recruited dairy farms were comparable to farms 

throughout the UK, with a median herd size of 193 compared to a UK median of 178, 

a median 305-day milk yield of 7488 L compared to a UK median of 8967 L, and a 

median somatic cell count (SCC) of 167,000 cells/mL of milk compared to a UK 

median of 178,000 cells/mL of milk. Antibiotic purchasing in 2016 was 26 milligrams 

per population corrected unit (mg/PCU) for the UK dairy industry (3) and 21 mg/PCU 

for represented farms. 

Of the 53 farms recruited, 43 study farms were in a 50 x 50 km area defined based 

on the locations of 146 general practices that referred routine urine samples from 

human patients to the microbiology reference lab at Severn Pathology, Southmead 

Hospital (8). A further 10 study farms were clustered in a separate region of South 

West England.  

All farmers gave fully informed consent to participate in the study. Ethical approval 

was obtained from the University of Bristol’s Faculty of Health Sciences Research 

Ethics Committee (ref 41562). 

 

Farm sampling, sample characteristics and sample processing 

Farms were visited monthly between January 2017 and December 2018. Samples 

were collected using sterile overshoes (over-boot socks) traversing farm areas. 
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Where access was restricted (e.g., for pens containing single or pairs of calves), 

samples were collected directly from the ground using gloved hands.  

Samples were collected of the following six types: “Adult” samples, the faecally 

contaminated environment of the milking cow population - either the collecting yard, 

housing shed or field, collected every month from 52 farms (one farm was a 

youngstock-only unit). “Dry Cow” samples, the faecally contaminated environment of 

the dry cow population, collected from 46 farms. “Heifer” and “Calf” samples, the 

faecally contaminated environment of replacement dairy heifers. These categories 

were not mutually exclusive and reflected the animals present when the samples 

were collected. In addition, 209 (5%) samples were collected where no relevant 

animals were present. On 41 farms, approximately 10 heifers were followed per farm 

from birth until 18 months of age, with samples collected monthly from their 

environment, whether housed in a shed or out at pasture. Furthermore, 10 farms had 

samples collected from additional groups of pre-weaned replacement heifer calves 

(calves still being fed milk) to increase the number of samples available of this type. 

For analysis, because of the differing management practices at different life stages, 

replacement heifer samples were divided into those associated with pre-weaned 

calves (Calf samples) and post-weaned heifers (Heifer samples). “Pasture” samples 

from the faecally contaminated environments around the above animals whilst 

grazing on pastureland on 47 farms were also separated from a subset of “Footpath” 

samples which were taken from public footpaths or other rights of way that crossed 

the farm, where relevant, on 41 farms. 

Characteristics for each sample were recorded on a datasheet at the time of 

collection. Different information was recorded depending on the sample type.  
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For all samples: sample number; textual description of sample location; whether 

animals were housed or in a field; Ordinance Survey reference for outdoor 

samples. For Calf samples: sample number; eartag numbers; textual description of 

the sample location; total number of animals in the group; presence or absence of 

beef calves in the group; date of birth for each calf; dry cow therapy used on the dam 

of each calf in the dry period before the birth. For Footpath samples: presence of 

livestock at time of sampling.  

Samples were refrigerated (4-8°C) from collection to processing, were transferred 

into individual labelled sterile stomacher bags, and suspended in 10 ml.g-1 of 

phosphate buffered saline (PBS Dulbecco A; Oxoid, Basingstoke, UK). Samples 

were then mixed for one min in a stomacher (Stomacher 400, Seward, Worthing, 

UK). Samples were mixed 50:50 with sterile glycerol and aliquots stored at -80°C. 

 

Microbiology and PCR analysis 

Twenty microlitres of sample (diluted 1:10) were spread onto tryptone bile X-

glucuronide agar (TBX; Scientific Laboratory Supplies); 20 µL of undiluted sample 

were spread onto TBX agar containing 16 mg.L-1 tetracycline, 8 mg.L-1 amoxicillin, 0.5 

mg.L-1 ciprofloxacin, 16 mg.L-1 streptomycin or 16 mg.L-1 cephalexin. Plates were 

incubated at 37°C, and the number of blue colonies (E. coli) counted. Samples yielding 

no E. coli colonies on antibiotic-free agar were excluded from further analysis. Up to 

five E. coli isolates from each cephalexin TBX agar plate were transferred onto 

cefotaxime (CTX, 2 mg.L-1) TBX agar. All AB concentrations were chosen as those 

which define clinically relevant resistance in humans according to EUCAST (31). Two 

multiplex PCRs were performed to screen for β-lactamase genes in CTX-R E. coli. 

The first was to detect blaCTX-M groups as previously described (32) and the second 
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was to detect the following additional β-lactamase genes: blaCMY, blaDHA, blaSHV, 

blaTEM, blaOXA-1 (8). 

 

Obtaining farm management information 

Four management practice questionnaires were developed. Questionnaire 1 was 

completed by the researcher in the presence of the farmer at the time of consent and 

the first farm visit. Questionnaire 2 was completed by the researcher in the presence 

of the farmer using Epicollect5 approximately six to nine months into the project. 

Questionnaire 3 was completed by the researcher in the presence of the farmer 

using Epicollect5 approximately 12-16 months into the project. Questionnaire 4 was 

completed by the researcher during a telephone call with the farmer within two 

months of the last visit to the farm. All questionnaires are presented in Table S6. 

In total, there were 610 variables derived from the four questionnaires used in the 

analyses. Questions giving rise to these variables were validated and processed in 

the following way: Questions with a single response or zero variance were removed. 

Questions which had either been shown in the literature to be important risk factors 

or which were judged by veterinary experts to be of potential importance were 

selected. Categorical levels were collapsed to avoid small response counts. Some 

questions were combined as individually they provided detail irrelevant to this study. 

Repeat questions of demographic variables were averaged. Variables with missing 

values were removed; all variables removed for this reason were also considered 

likely to be of low importance. As a result, all the categorical variables were 

dichotomous.  
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Monitoring ABU 

All dairy farmer participants gave permission for researchers to contact their 

veterinary practices and request AB prescription/sales data for a period of at least 

one year before the beginning of the project through the end of the project. 

All practices except one supplied records. This practice serviced two farms and on-

farm records were used instead for these two farms. 

Data were assessed by a veterinary researcher to ensure consistent naming of 

products and quantification between practices, given a wide range of variations on 

product names and quantity denominators used. 

Usage metrics were produced using mg/PCU for the first 12 months of the project, 

from the date the farm enrolled on the project and had the first samples collected 

(range January 2017-July 2017) until 12 months after this date (range January 2018-

July 2018). 

 

Risk factor analysis 

The risk factors examined fell into four categories: farm management, ABU, sample 

characteristics and meteorological. The first three are described above; for the last, 

local meteorological data were extracted from publicly available UK Met Office data 

(https://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/yeoviltondata.

txt). 

Sample processing and data analysis workflows are illustrated in Figure S2. All data 

analysis was performed using R (https://www.r-project.org/). Two modelling 

approaches were used: 1) variable selection via univariable screening and stepwise 

model selection with a multilevel, multivariable logistic regression model and 2) a 

regularised Bayesian model. Both were used to analyse risk factors associated with 

https://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/yeoviltondata.txt
https://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/yeoviltondata.txt
https://www.r-project.org/
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blaCTX-M E. coli positivity; the second was also used to analyse risk factors 

associated with positivity for E. coli resistant to amoxicillin, ciprofloxacin, 

streptomycin, and tetracycline. Sensitivity analyses were performed to test for 

measurement bias, to account for the fact that resistant E. coli were more likely to be 

found in a sample if there was a higher density of bacterial colony forming units. 

Further details of variable selection and development of the models and model 

checking are presented below. All code can be found at 

https://github.com/HannahSchubert1/OH-STAR-modelling-code. Details of all model 

checking can be found in Figure S3. 

 

Modelling risk of blaCTX-M β-lactamase gene carriage 

Risk factor analysis was performed separately on Calf data and on the full dataset 

(all samples combined). Thirty-seven variables were selected for the Calf risk factor 

analysis and 110 for the full risk factor analysis as described below. Exploratory data 

analysis revealed the main source of clustering of observations was at the farm level. 

There were no noticeable longitudinal patterns or clustering due to the location within 

each farm. Random intercept logistic regression models with farm as a random effect 

were used throughout the analysis.  

Two approaches to risk factor analysis were performed: a frequentist variable 

selection method (using univariable screening followed by step-down model 

selection and maximum likelihood estimation; Method 1) and a Bayesian method 

with regularization (Method 2, on the full dataset only). 

Method 1: Variable selection 

Variable selection was performed by first screening the variables for association with 

E. coli carrying blaCTX-M using univariable, multilevel logistic regression (33) with 

https://github.com/HannahSchubert1/OH-STAR-modelling-code
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each variable entered as a fixed effect and with random intercepts for each farm. 

Continuous variables were first checked for linearity with the log odds of the outcome 

to assure they did not violate model assumptions. For the analysis of the full dataset, 

it was not possible to converge such a model for 27 of the variables (most likely due 

to the low number of samples that were positive for E. coli carrying blaCTX-M), so 83 

variables were examined. See Tables S1 and S2 for full univariable results. 

Variables with associations where p <0.25 after controlling for false discovery rate 

using the Benjamini-Hochberg procedure (chosen to be the most appropriate method 

for the exploratory nature of the project) were entered in to a multivariable, multilevel 

logistic regression model with random intercepts for each farm. A backwards 

stepwise procedure was used to further refine the model, selecting only those 

variables where the regression coefficient maintained p<0.05. Variables which 

survived this analysis were checked for multicollinearity by removing each variable in 

turn and checking that the confidence intervals for the estimate for each variable still 

overlapped. The predictive accuracy was checked using area under the Receiver 

Operating Characteristic Curve (0.84 for the full dataset; 0.80 for Calf data). 

Method 2: Bayesian model for predicting presence of blaCTX-M-positive E. coli 

A farm-level random intercept model was fit using the R package BRMS (34) on the 

full dataset. All variables were used as predictors of blaCTX-M-positive E. coli but were 

split into two groups. The first group comprised farm-level 1) total antibiotic use, 2) 

total third- and fourth-generation cephalosporin use, and 3) total first-generation 

cephalosporin use. The second group contained the remaining meteorological and 

farm management variables. For the first group, uninformative priors (normal 

distribution with a mean 0, standard deviation 5) were used; for the second group, a 

regularizing prior (horseshoe prior with a single degree of freedom [35]) was used. 



 

22 
 

The mean intercept was also given a diffuse prior (normal distribution with mean 0, 

standard deviation 5) while the standard deviation of the random effects was given a 

half-Student-T distribution with three degrees of freedom and a scale factor of 10 

(the default in BRMS). Four independent Markov chains were sampled with 1000 

warmup iterations and 1000 sampling iterations. The target acceptance criterion was 

increased from the default 0.8 to 0.95 to decrease the chance of sampling 

divergencies (although two remained, these were not deemed significant). The 

sampling was assumed to be well converged as the Gelman-Rubin statistic for each 

variable was 1.00. Results are shown in Table S3.  

 

Accounting for measurement error 

To account for measurement error of the blaCTX-M-positive E. coli (whereby if more E. 

coli were found in a sample, the sensitivity of the test for finding blaCTX-M-positive E. 

coli was higher) the logistic link function was altered to include the sensitivity and 

specificity of each sample, following the work by Coutinho et al. (36). The altered 

logistic link function was derived by equating the conditional probability of the true 

blaCTX-M status 𝑃(𝑌𝑡𝑟𝑢𝑒 = 1|𝑋) to the conditional probability of the observed blaCTX-M 

status, 𝑃(𝑌𝑜𝑏𝑠 = 1|𝑋) for a given sensitivity (s) and specificity (e).  

The specificity of the blaCTX-M test was assumed to be 100% across samples 

whereas the sensitivity (𝑠) was estimated separately for each observation using the 

number of E. coli colonies grown on antibiotic-free agar (𝑘) and a minimum 

detectable prevalence of blaCTX-M-positive E. coli (𝑞) through: 

𝑠 = 1 − (1 − 𝑞)𝑘 
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The distribution 𝑠 across the whole dataset using Method 1 for different values of 𝑞 is 

shown in Figure S4. While the value of 𝑞 did change the sensitivity associated with 

each observation, this change had only a negligible effect on the coefficient 

estimates (Figure S1A) and AUC (Fig S1B) over the range 0.01 –  1.00. The 

reported values used a 𝑞 of 0.01. The R-code for this link function is provided in 

Supplementary (Figure S5). 

 

Model for predicting presence of E. coli resistant to non-cephalosporins 

For each resistance phenotype – amoxicillin, ciprofloxacin, streptomycin, and 

tetracycline - a random intercept model with farm as the random effect was fitted 

using the R package BRMS on the full dataset (https://cran.r-

project.org/web/packages/brms/index.html). All variables (see above) were used as 

predictors of resistant E. coli in a sample but were split into two groups. The first 

group (the ‘main’ variables) comprised farm-level ABU and average monthly 

temperature at the time of sample collection as these were the main variables 

hypothesised to influence resistance. For all models, total ABU, streptomycin usage, 

tetracycline usage, amoxicillin usage, fluoroquinolone usage and cefalexin usage 

were included as predictors. For each model, the usage of additional antibacterial 

drugs was tested if they were hypothesised to be important in selecting for 

resistance to the relevant model: for the amoxicillin model, first-generation 

cephalosporins, penicillins, potentiated amoxicillin; for the ciprofloxacin model, 

novobiocin, third- and fourth-generation cephalosporins; for the streptomycin and 

tetracycline models, no additional ABU variables were tested. The second group of 

variables (the ‘regularised’ variables) contained the remaining farm management 

variables.   
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For the first group (the ‘main’ variables), uninformative priors (normal distribution with 

a mean 0, standard deviation 5) were used; for the second group (the ‘regularised’ 

variables), a regularising prior (horseshoe prior with a single degree of freedom) was 

used. The mean intercept was also given a diffuse prior (normal distribution with 

mean 0, standard deviation 5) while the standard deviation of the random effects 

was given a half-Student-T distribution with three degrees of freedom and a scale 

factor of 10 (the default in BRMS). Four independent Markov chains were sampled 

with 1,000 warmup iterations and 10,000 sampling iterations. The target acceptance 

criterion was increased from the default 0.8 to 0.98 to decrease the chance of 

sampling divergencies in all models. Measurement error based on E. coli density 

was accounted for as described above. All reported results used a q of 0.01.  

In addition, the measurement error of temperature was considered because only an 

average monthly temperature was available. Data where daily temperature was 

recorded for a (different) twelve-month period were used to calculate an estimated 

average monthly standard deviation over the twelve months (2.89). The ‘me’ function 

in the package ‘BRMS’ (https://rdrr.io/cran/brms/man/me.html) was used, whereby 

the monthly temperature variable was assumed to vary with a standard deviation of 

2.89 (0.61 when scaled as the temperature was scaled to mean 0 and standard 

deviation 1 before entering the model; the actual standard deviation of the 

temperature was 4.7).  

To further test the robustness of the model outputs, all models were re-run using 

sceptical priors, whereby the prior was set to the opposite of what would be 

expected. So, for all main variables, if there was an association, a positive 

association would be expected given prior knowledge. To test the models with 

sceptical priors, a prior for the main variables was given as a normal distribution with 
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mean -0.5 and a narrow standard deviation 2 (i.e. assuming a negative correlation 

with low variation; the opposite of expected). 

  

Bayesian model checking  

Convergence is assumed to be good with a Gelman-Rubin statistic (Rhat) of 1.00 for 

all variables across all models. Figure S6 shows trace plots for the associated 

variables, also providing evidence of good convergence. There were no divergence 

issues reported for any of the models. Table S4 shows full results from all models, 

including odds ratios, 95% credible intervals and effective sample sizes. Figure 

S7 shows the posterior distributions of the associated variables. Re-running the 

models with sceptical priors did not alter the model conclusions (Table S5).  
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Tables 

Table 1. Prevalence of E. coli carrying blaCTX-M at farm and sample levels 

Sample type  Farm level Sample level 

Overall Total sample size 53 4145 

 Total (%) positive for 

CTX-M-carrying E. coli  

42 (79.2%) 224 (5.4%) 

Adult Total sample size 52 1835 

 Total (%) positive for 

CTX-M-carrying E. coli 

25 (48.1%) 76 (4.1%) 

Dry Cow Total sample size 46 282 

 Total (%) positive for 

CTX-M-carrying E. coli  

7 (15.2%) 8 (2.8%) 

Calf Total sample size 51 631 

 Total (%) positive for 

CTX-M-carrying E. coli  

33 (64.7%) 98 (15.5%) 

Heifer Total sample size 41 1235 

 Total (%) positive for 

CTX-M-carrying E. coli  

18 (44%) 40 (3.2%) 

Pastureland  

 

Total sample size 47 630 

 Total (%) positive for 

CTX-M-carrying E. coli 

8 (17%) 12 (1.9%) 

Pastureland 

that is 

publicly 

accessible 

(Footpath) 

Total sample size 41 395 

 Total (%) positive for 

CTX-M-carrying E. coli 

8 (20.0%) 11 (2.8%) 
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Table 2. Fixed effects from the multilevel, multivariable logistic regression model 

predicting blaCTX-M E. coli positivity performed on Calf samples 

Risk factor Odds ratio [95% confidence 

interval] 

p 

Use of cefquinome dry cow therapy in 

the last six months 

4.18 [2.11, 8.25] 0.00003 

Daily water trough cleaning 0.44 [0.29, 0.69] 0.0002 

Average monthly temperature 1.57 [1.20, 2.06] 0.0008 

Use of framycetin dry cow therapy in the 

last six months 

1.91 [1.01, 3.61] 0.04 
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Table 3. Fixed effects from the multilevel, multivariable logistic regression model 

predicting blaCTX-M E. coli positivity performed on the full dataset 

Risk factor Odds ratio [95% 

confidence interval] 

p 

Sample taken from the environment of    

pre-weaned heifers 

4.52 [3.25, 6.27] <0.00000001 

Average monthly temperature 1.61 [1.36, 1.90] 0.00000001 

Sample taken from pastureland 0.32 [0.17,0.61] 0.0004 

Feeding of maize silage 3.28 [1.50, 7.18] 0.002 
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Table 4. Farm and sample-level prevalence of resistance to non-cephalosporins 

Antibacterial drug  Farm level resistance Sample level resistance 

Amoxicillin  53/53 (100%)  2754/4145 (66%)  

Ciprofloxacin   49/53 (92%)  263/4145 (6%)  

Streptomycin  53/53 (100%)  1475/4145 (36%)  

Tetracycline  53/53 (100%)  2874/4145 (69%)  
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Table 5. Fixed effects from a Bayesian model predicting resistant E. coli positivity 

performed on the full dataset 

Risk factor  
Odds ratio [95% credible 
interval]  

Amoxicillin resistance  

Average monthly temperature  1.91 [1.57, 2.35]  

Sample taken from the environment of pre-weaned 
heifers  1.99 [1.29, 2.98]  

Sample taken from pastureland  0.27 [0.20, 0.37]  

  

Ciprofloxacin resistance  

Average monthly temperature  2.14 [1.63, 2.87]  

Sample taken from the environment of pre-weaned 
heifers  4.13 [2.79, 6.46]  

  

Streptomycin resistance  

Average monthly temperature  1.53 [1.32, 1.77]  

Sample taken from the environment of pre-weaned 
heifers 1.95 [1.46, 2.51]  

  

Tetracycline resistance  

Average monthly temperature  1.98 [1.55, 2.55]  

Sample taken from the environment of pre-weaned 
heifers  3.39 [2.00, 5.82]  

Sample taken from pastureland  0.24 [0.15, 0.35]  

  

Sample taken during the calving season  2.02 [1.10, 3.29]  

Average monthly rainfall  1.26 [1.08, 1.47]  

Total farm streptomycin use in 2017 measured        
in mg/PCU 0.76 [0.60, 0.97]  

Total farm ABU in 2017 measured in mg/PCU 1.47 [1.01, 2.13]  
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Figure Legends 

Figure 1. Average monthly temperature vs. presence or absence of E. coli positive 

for blaCTX-M in samples from (A) pre-weaned calves and (B) all faecally contaminated 

dairy farm environments. Each sample is represented by a dot. A multilevel, 

multivariable logistic regression model revealed a positive association with increased 

temperature in both cases (p=<0.0001). 

 

Figure 2. Percentage of farms with (A) E. coli positive for blaCTX-M in samples (B) 

ciprofloxacin-resistant E. coli. Data are presented by month (bars) and overlayed by 

a graph of average monthly temperature (dots) representing a year during the middle 

period of this study. Samples from calves have been excluded.   
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Figure 1 
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Figure 2 

 


