1,237 research outputs found
Postischemic treatment of neonatal cerebral ischemia should target autophagy.
OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia
A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging
Increased production of reactive oxygen and nitrogen species has recently been implicated in the pathogenesis of cardiac and endothelial dysfunction associated with atherosclerosis, hypertension, and aging. Oxidant-induced cell injury triggers the activation of nuclear enzyme poly(ADP-ribose) polymerase (PARP), which in turn contributes to cardiac and vascular dysfunction in various pathophysiological conditions including diabetes, reperfusion injury, circulatory shock, and aging. Here, we investigated the effect of a new PARP inhibitor, INO-1001, on cardiac and endothelial dysfunction associated with advanced aging using Millar's new Aria pressure-volume conductance system and isolated aortic rings. Young adult (3 months old) and aging (24 months old) Fischer rats were treated for 2 months with vehicle, or the potent PARP inhibitor INO-1001. In the vehicle-treated aging animals, there was a marked reduction of both systolic and diastolic cardiac function and loss of endothelial relaxant responsiveness of aortic rings to acetylcholine. Treatment with INO-1001 improved cardiac performance in aging animals and also acetylcholine-induced, nitric oxide-mediated vascular relaxation. Thus, pharmacological inhibition of PARP may represent a novel approach to improve cardiac and vascular dysfunction associated with aging
Molecular characterization of a virus from the family luteoviridae associated with cotton blue disease.
Cotton blue disease is an aphid-transmitted cotton disease described in Brazil in 1962 as Vein Mosaic “var. Ribeirão Bonito”. At present it causes economically important losses in cotton crops if control measures are not implemented. The observed symptoms and mode of transmission have prompted researchers to speculate that cotton blue disease could be attributed to a member of the family Luteoviridae, but there was no molecular evidence supporting this hypothesis. We have amplified part of the genome of a virus associated with this disease using degenerate primers for members of the family Luteoviridae. Sequence analysis of the entire capsid and a partial RdRp revealed a virus probably belonging to the genus Polerovirus. Based on our results we propose that cotton blue disease is associated with a virus with the putative name Cotton leafroll dwarf virus (CLRDV)
Transfer of Small Resting B Cells into Immunodeficient Hosts Results in the Selection of a Self-renewing Activated B Cell Population
We studied the role of bone marrow B cell production in the renewal of peripheral B cells and the feedback mechanisms that control the entry of newly formed B cells into the peripheral B cell pools. When resting lymph node B cells are injected into B cell–deficient hosts, a fraction of the transferred cells expands and constitutes a highly selected population that survives for prolonged periods of time by continuous cell renewal at the periphery. Although the number of donor B cells recovered is low, a significant fraction shows an activated phenotype, and the serum immunoglobulin (Ig)M levels are as in normal mice. This population of activated B cells is resistant to replacement by a new cohort of B cells and is able to feedback regulate both the entry of newly formed B cells into the peripheral pool and terminal differentiation. These findings suggest that peripheral B cell selection follows the first come, first served rule and that IgM-secreting cells are generated from a pool of stable activated B cells with an independent homeostasis
Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients
<p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p
Combined cytogenetic and molecular methods for taxonomic verification and description of Brassica populations deriving from different origins
Agriculture faces great challenges to overcome global warming and improve system sustainability, requiring access
to novel genetic diversity. So far, wild populations and local landraces remain poorly explored. This is notably the case for
the two diploid species, Brassica oleracea L. (CC, 2n=2x=18) and B. rapa L. (AA, 2n=2x=20). In order to explore the
genetic diversity in both species, we have collected populations in their centre of origin, the Mediterranean basin, on a
large contrasting climatic and soil gradient from northern Europe to southern sub-Saharan regions. In these areas, we also
collected 14 populations belonging to five B. oleracea closely related species. Our objective was to ensure the absence of
species misidentification at the seedling stage among the populations collected and to describe thereafter their origins. We
combined flow cytometry, sequencing of a species-specific chloroplast genomic region, as well as cytogenetic analyses in
case of unexpected results for taxonomic verification. Out of the 112 B. oleracea and 154 B. rapa populations collected, 103
and 146, respectively, presented a good germination rate and eighteen populations were misidentified. The most frequent
mistake was the confusion of these diploid species with B. napus. Additionally for B. rapa, two autotetraploid populations
were observed. Habitats of the collected and confirmed wild populations and landraces are described in this study. The unique
plant material described here will serve to investigate the genomic regions involved in adaptation to climate and microbiota
within the framework of the H2020 Prima project ‘BrasExplor’
A Quantitative Study of the Mechanisms behind Thymic Atrophy in Gαi2-Deficient Mice during Colitis Development
Mice deficient for the G protein subunit Gαi2 spontaneously develop colitis, a chronic inflammatory disease associated with dysregulated T cell responses. We and others have previously demonstrated a thymic involution in these mice and an aberrant thymocyte dynamics. The Gαi2−/− mice have a dramatically reduced fraction of double positive thymocytes and an increased fraction of single positive (SP) thymocytes. In this study, we quantify a number of critical parameters in order to narrow down the underlying mechanisms that cause the dynamical changes of the thymocyte development in the Gαi2−/− mice. Our data suggest that the increased fraction of SP thymocytes results only from a decreased number of DP thymocytes, since the number of SP thymocytes in the Gαi2−/− mice is comparable to the control littermates. By measuring the frequency of T cell receptor excision circles (TRECs) in the thymocytes, we demonstrate that the number of cell divisions the Gαi2−/− SP thymocytes undergo is comparable to SP thymocytes from control littermates. In addition, our data show that the mature SP CD4+ and CD8+ thymocytes divide to the same extent before they egress from the thymus. By estimating the number of peripheral TREC+ T lymphocytes and their death rate, we could calculate the daily egression of thymocytes. Gαi2−/− mice with no/mild and moderate colitis were found to have a slower export rate in comparison to the control littermates. The quantitative measurements in this study suggest a number of dynamical changes in the thymocyte development during the progression of colitis
- …