111 research outputs found

    Postage stamp multiple anterior capsulorhexisotomies in pediatric cataract surgery

    Get PDF
    BACKGROUND: Capsule related complications are common following pediatric cataract surgery. We report a new technique of multiple anterior capsulorhexisotomies after lens aspiration and intraocular lens (IOL) implantation. METHODS: After performing automated lens aspiration, an IOL was implanted into the capsular bag. A bent 26 gauge needle was introduced through one side port and multiple small cuts were made in one half of the circumference of the anterior capsular rim by making a radial movement of the needle tip centripetally over the margin of the anterior capsular rim. The needle was again introduced through the other side port and multiple similar cuts were made in the other half thereby creating nearly 20 – 30 cuts at the margin of the anterior capsular rim. RESULTS: The mean size of the primary capsulorhexis was 4.33 ± 0.20 mm. A uniform enlargement of the capsulorhexis could be performed in all the eyes without peripheral extension in any of the eyes. There was no damage to the posterior capsule and no scratch mark on the IOL. In one eye, the primary capsulorhexis was slightly eccentric, though it was covering the IOL optic all around. The rhexisotomies in this eye were limited to the capsular rim that was overlapping more on the IOL optic (sectoral anterior capsulorhexisotomies). CONCLUSION: The technique of postage stamp anterior capsulorhexisotomies is a feasible technique in pediatric cataracts

    Polar vortex formation in giant-planet atmospheres due to moist convection

    Get PDF
    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.National Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.) (ATM-0850639)National Science Foundation (U.S.) (AGS-1032244)National Science Foundation (U.S.) (AGS-1136480)United States. Office of Naval Research (N00014-14-1-0062

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Recent advancement in Phaco-Technology

    No full text

    Polymorphisms of the gamma crystallin A and B genes among Indian patients with pediatric cataract

    No full text
    Background : Previous familial studies have reported co-segregation of mutation in gamma crystallin A and B CRYGA and CRYGB genes with childhood cataract. Aim : We investigated association of nucleotide variations in these genes in subjects with and without pediatric cataract from India. Settings and Design : The study included 195 pediatric subjects including healthy children with no ocular defects and pediatric cataract cases. Materials and Methods : Subjects were genotyped by PCR-RFLP method for exonic and intronic genetic variations in CRYGA and CRYGB. Statistical Analysis : The association of these polymorphisms with cataract was estimated by two way contingency tables and the risk allele was also analyzed for their functional impact using in silico tools. Results : No significant difference was observed between cases and control subjects for the frequencies of SNPs G198A (Intron A), T196C (Exon 3) of CRYGA and G449T (Exon 2) of CRYGB gene. -47C allele of rs2289917 in CRYGB showed the strongest association with cataract (Odd Ratio-OR=3.34, 95% Confidence Interval-CI 95% =1.82-6.12, P=0.00007). In silico analyses revealed that this polymorphism lies in a phylogenetically conserved region and impacts binding of a transcription factor, viz. progesterone receptor (PR) to CRYGB promoter. Conclusion : rs2289917 risk allele showed a strong association with increased vulnerability for pediatric cataract. The findings suggest that this association may be a secondary phenomenon related to genetic variation playing critical role in lens development during perinatal and/or pediatric growth. Present exploratory study provides a basis for further defining the role of PR as a regulator of CRYG locus in lens formation/transparency

    Lingula, Lingulae

    No full text
    • …
    corecore