155 research outputs found
Effect of slow-release FSH on embryo recovery in dairy cows
AETE, Bath, UK, 8-9 September, 2017201
Enzyme Activity of Phosphatase of Regenerating Liver (PRL-1) Is Controlled by Redox Environment and Its C-terminal Residues
This publication was made possible by National Institutes of Health Grant P20 RR-17708 from the National Center for Research Resources and the Kansas University Center for Research. This work was additionally supported by fellowships for A.L.S. from Amgen and the Edith and Eleta Ernst Cancer Research Fellowship. The Q-Tof2tm instrument was purchased with support from KSTAR, Kansas-administered NSF EPSCoR, and the University of Kansas. The CapXL HPLC system was obtained with support from KCALSI.Phosphatase of regenerating liver-1 (PRL-1) belongs to a unique subfamily of protein tyrosine phosphatases (PTPases) associated with oncogenic and metastatic phenotypes. While considerable evidence exists to supports a role for PRL-1 in promoting proliferation, the biological regulators and effectors of PRL-1 activity remain unknown. PRL-1 activity is inhibited by disulfide bond formation at the active site in vitro, suggesting PRL-1 may be susceptible to redox regulation in vivo. Because PRL-1 has been observed to localize to several different subcellular locations and cellular redox conditions vary with tissue type, age, stage of cell cycle and subcellular location, we determined the reduction potential of the active site disulfide bond that controls phosphatase activity to better understand the function of PRL-1 in various cellular environments. We used high-resolution solution NMR spectroscopy to measure the potential and found it to be −364.3 ± 1.5 mV. Because normal cellular environments range from −170 to −320 mV, we concluded that nascent PRL-1 would be primarily oxidized inside cells. Our studies show that a significant conformational change accompanies activation, suggesting a post-translational modification may alter the reduction potential, conferring activity. We further demonstrate that alteration of the C-terminus renders the protein reduced and active in vitro, implying the C-terminus is an important regulator of PRL-1 function. These data provide a basis for understanding how subcellular localization regulates the activity of PRL-1 and, with further investigation, may help reveal how PRL-1 promotes unique outcomes in different cellular systems, including proliferation in both normal and diseased states
Genetic evidence supports recolonisation by Mya arenaria of western Europe from North America
The softshell clam Mya arenaria (L.) is currently widespread on the east and west coasts of North America. This bivalve also occurs on western European shores, where the post-Pleistocene origin of the species, whether introduced or relict, has been debated. We collected 320 M. arenaria from 8 locations in Europe and North America. Clams (n = 84) from 7 of the locations were examined for mitochondrial DNA variation by sequencing a section of the cytochrome oxidase 1 (COX1) gene. These were analysed together with 212 sequences, sourced from GenBank, from the same gene from 12 additional locations, chiefly from eastern North America but also 1 site each from western North America and from western Europe. Ten microsatellite loci were also investigated in all 320 clams. Nuclear markers showed reduced levels of variation in certain European samples. The same common COX1 haplotypes and microsatellite alleles were present throughout the range of M. arenaria, although significant differences were identified in haplotypic and allelic composition between many samples, particularly those from the 2 continents (Europe and North America). These findings support the hypothesis of post-Pleistocene colonisation of European shores from eastern North America (and the recorded human transfer of clams from the east to the west coast of North America in the 19th century)
On the applicability of discrete dipole approximation for plasmonic particles
It has been recognized that the commonly used discrete dipole approximation (DDA) for calculating the optical properties of plasmonic materials may exhibit slow convergence for a certain region of the complex refractive index. In this work we investigate the quantitative accuracy of DDA for particles of different shapes, with silver as the plasmonic material. As expected, the accuracy and convergence of the method as a function of the number of dipoles is relatively good for solid spheres and rounded cubes whose size is of the same order as the wavelength of the localized surface plasmon resonance in silver. However, we find that for solid particles much smaller than the resonance wavelength, and for silver-silica core-shell particles in particular, DDA does not converge to the correct limit even for 10(6) dipoles. We also find that the slow convergence tends to be accompanied by strong, discretization dependent oscillations in the particle's internal electric field. We demonstrate that the main factor behind the slow convergence of the DDA is due to inaccuracies in the plasmonic resonances of the dipoles at the surface of the particles. (C) 2015 Elsevier Ltd. All rights reserved.Peer reviewe
Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy
Aims Nationwide large-scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published. Methods and results We sequenced 59 cardiomyopathy-associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3-Gln1061Ter, MYH7-Arg1053Gln, and TPM1-Asp175Asn) and a fourth major mutation MYH7-Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 +/- 4.2 year follow-up, annual all-cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P <0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266-91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098-1.363, P <0.001) were independent predictors of HCM-related mortality and life-threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P <0.001), but there was no difference in all-cause or HCM-related mortality between the two groups. Mortality due to HCM during 10 year follow-up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM-related deaths, of which 32% were sudden. Conclusions We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM-related mutations in non-sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM-related deaths annually.Peer reviewe
Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency
Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and productive viral replication phases, involving extensive viral DNA replication and gene expression. A sustained balance between latency and reactivation to the productive infection state is essential for viral persistence and KSHV pathogenesis. Our study demonstrates that the KSHV v-cyclin and cellular CDK6 kinase phosphorylate NPM on threonine 199 (Thr199) in de novo and naturally KSHV-infected cells and that NPM is phosphorylated to the same site in primary KS tumors. Furthermore, v-cyclin-mediated phosphorylation of NPM engages the interaction between NPM and the latency-associated nuclear antigen LANA, a KSHV-encoded repressor of viral lytic replication. Strikingly, depletion of NPM in PEL cells leads to viral reactivation, and production of new infectious virus particles. Moreover, the phosphorylation of NPM negatively correlates with the level of spontaneous viral reactivation in PEL cells. This work demonstrates that NPM is a critical regulator of KSHV latency via functional interactions with v-cyclin and LANA
Work and family: associations with long-term sick-listing in Swedish women – a case-control study
<p>Abstract</p> <p>Background</p> <p>The number of Swedish women who are long-term sick-listed is high, and twice as high as for men. Also the periods of sickness absence have on average been longer for women than for men. The objective of this study was to investigate the associations between factors in work- and family life and long-term sick-listing in Swedish women.</p> <p>Methods</p> <p>This case-control study included 283 women on long-term sick-listing ≥90 days, and 250 female referents, randomly chosen, living in five counties in Sweden. Bivariate and multivariate logistic regression analyses with odds ratios were calculated to estimate the associations between long-term sick-listing and factors related to occupational work and family life.</p> <p>Results</p> <p>Long-term sick-listing in women is associated with self-reported lack of competence for work tasks (OR 2.42 1.23–11.21 log reg), workplace dissatisfaction (OR 1.89 1.14–6.62 log reg), physical workload above capacity (1.78 1.50–5.94), too high mental strain in work tasks (1.61 1.08–5.01 log reg), number of employers during work life (OR 1.39 1.35–4.03 log reg), earlier part-time work (OR 1.39 1.18–4.03 log reg), and lack of influence on working hours (OR 1.35 1.47–3.86 log reg). A younger age at first child, number of children, and main responsibility for own children was also found to be associated with long-term sick-listing. Almost all of the sick-listed women (93%) wanted to return to working life, and 54% reported they could work immediately if adjustments at work or part-time work were possible.</p> <p>Conclusion</p> <p>Factors in work and in family life could be important to consider to prevent women from being long-term sick-listed and promote their opportunities to remain in working life. Measures ought to be taken to improve their mobility in work life and control over decisions and actions regarding theirs lives.</p
Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data
The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here
- …