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Abstract

It has been recognized that the commonly used discrete dipole approximation
(DDA) for calculating the optical properties of plasmonic materials may exhibit
slow convergence for a certain region of the complex refractive index. In this
work we investigate the quantitative accuracy of DDA for particles of different
shapes, with silver as the plasmonic material. As expected, the accuracy and
convergence of the method as a function of the number of dipoles is relatively
good for solid spheres and rounded cubes whose size is of the same order as
the wavelength of the localized surface plasmon resonance in silver. However,
we find that for solid particles much smaller than the resonance wavelength,
and for silver-silica core-shell particles in particular, DDA does not converge to
the correct limit even for 10° dipoles. We also find that the slow convergence
tends to be accompanied by strong, discretization dependent oscillations in the
particle’s internal electric field. We demonstrate that the main factor behind the
slow convergence of the DDA is due to inaccuracies in the plasmonic resonances
of the dipoles at the surface of the particles.

Keywords: plasmonic nanoparticles, Discrete dipole approximation,
Boundary element method

1. Introduction

The absorption and scattering properties of gold and silver nanoparticles,
as seen for example in the colours of stained glass windows, have intrigued
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people for centuries. In one of the early attempts to understand them, Michael
Faraday ﬂil] already noted and studied their unusual appearance. However, it
was only over a century ago that the strong absorption and scattering peaks
of the spherical metallic nanoparticles were properly explained by Gustav Mie
E} The peaks are now understood to be caused by localized surface plasmon
resonances (LSPR). While Mie theory continues to provide a powerful method
for scattering and absorption calculations, its usefulness is limited to highly
symmetric particles, such as spheres and ellipsoids. As can be seen from, for
example references B, @, B], with modern nanotechnology a wide variety of
nanoparticle shapes can be produced.

A number of different numerical methods can be used to calculate the
scattering and absorption of arbitrarily shaped nanoparticles. These include
the finite-difference time-domain method (FDTD) [6], the boundary element
method (BEM) [7] and the discrete dipole approximation (DDA) [§], occasion-
ally also known as the coupled-dipole approximation (CDA). DDA and BEM
are based on the volume differential equation (VIE) and the surface integral
equation (SIE), respectively. Another difference between them is that DDA is
restricted to regular rectilinear grids in its discretization, whereas BEM can use
a more accommodating unstructured triangular grid. FDTD on the other hand,
differs from BEM and DDA in that instead of solving integral equations, it is
based on a direct approach to Maxwells equations. Because FDTD works in the
time domain, it has the benefit of being able to analyze a large portion of the
spectrum simultaneously.

DDA has been shown to be a relatively simple to use and in some cases
extremely accuratoﬁ%] method, whose convergence has been analytically studied
by Yurkin et al. | and according to Mishchenko et al. ﬂl_lh is numerically
exact. A comprehensive overview of the method and of its recent developments
has been given by Yurkin and Hoekstra ﬂﬂ] DDA has naturally been used in
arlﬁdifferent areas, including the study of plasmonic nanoparticles , , ,

0, [17].

Certain unusual behavior of DDA regarding the plasmonic particles has been
reported, however. Hao et al. ﬂﬁ] found that the electric field near the surface
of the silver particles modelled converges very slowly with dipole count. Yurkin
et al. NE] found that in the near-IR wavelengths, 100nm gold spheres had an
error of 10 —20% in absorption, even for extremely fine discretizations. Further
on Yurkin has comprehensively analyzed DDA’s convergence @] and published
a map of it M] including the region of the complex refractive index which
is pertinent to the study of plasmonic nanoparticles. This map shows that the
convergence of DDA is much slower near and in the region of the refractive index
of silver for optical wavelengths. Karamehmedovi¢ et al. ] discovered that
DDA produces an unphysically varying internal electric field for silver particles,
while Kelly et al. ﬂl_AI] presented a similar looking polarization distribution in
trigonal silver prisms.

In the following sections we briefly describe the methods that are used here
and investigate DDA’s behavior in the region where the DDA experiences the
aforementioned problems. The results are compared to BEM and Mie theory
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and special attention is paid to the accuracy of the internal electric fields of the
particles. The cause for the problems has been suggested to be shape error on
the surfaces HE, ], and this especially seems to affect plasmonic particles.

2. Methods

2.1. Discrete dipole approzimation

The discrete dipole approximation (DDA) is a general method for simulating
scattering and absorption of electromagnetic waves for arbitrarily shaped parti-
cles. Since it was originally developed by Purcell and Pennypacker B] DDA has
been implemented and generalized in different ways, ADDA @] and DDSCAT
ﬂﬁ] being the two major freely available implementations.

DDA is based on the volume integral equation (VIE), in which the electric
field E = E™°¢ 4 E*°@ which consists of the field of the incident plane wave
E™e and the scattered field E*°®, can be written as [24]

B(r) =B () + Jim K3 /V W) - D6E) B ()

— (e(7) = 1) L- E(F)

Here kg is the wave number in vacuum and €,(7) is the complex relative per-
mittivity. The scattered field is written as a volume integral over the volume
of the particle V, from which an infinitesimal volume 0V around 7 has been
excluded. This is done in order to avoid a singularity, and the excluded volume
is taken into account by using the source dyadic L. The source dyadic depends
on the shape of the excluded volume and is usually chosen to be L = %1: , which
corresponds to a spherical volume. I is the unit dyadic. G(7,7) is the dyadic
Green’s function of free space, which can be written in matrix form as
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is the scalar free space Green’s function.
After discretization into N dipoles we arrive at the form

=_1_ k ~ — inc
a; 'pi - *OZGU Dy =B, (4)

where @; is the polarizability tensor, which gives the relationship between the
dipole moment p; of an element and the electric field as p; = &; - E;. There
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is some freedom in the choice of the polarizability and many different kinds of
polarizabilities have been implemented ﬂﬁ, %, @7 @, @, @, @], with radiative
corrections to account for the finite size of the volume element, etc. However,
most of the implementations reduce to DDA with the Clausius-Mossotti polar-
izability

Vi, ()

in the long wavelength limit @], provided that the lattice of dipoles is cubic.
An example of this can be seen in Fig. [[Il There are a couple of implementa-
tions that may act differently at the long wavelength limit, namely the filtered
coupled dipole formulation (FCD) [31] and the integrated Green’s tensor (IGT)
formulation [27).

DDA can be used to calculate many different kinds of data, Mueller matrix
elements, radiation torque, etc. The data discussed in the later sections con-
sists of absorption and scattering efficiencies Qups and Qs and electric field
strengths E in the near field regime. The different efficiencies @); are defined as
Q. =C;/ ﬂagﬁ, where aqg is the radius of a sphere that has the same volume
as the particle considered and C} is the absorption or scattering cross section of
the particle, depending on which efficiency is in question.

Although it is commonly known that very high complex refractive indices
n = n + ik may cause DDA to converge slowly, problems can also appear
when the absolute value of the complex refractive index is small, if 7 is mostly
imaginary ﬂE, |E, @, @} In this region unphysically varying internal electric
fields have also been reported ﬂ2_1|]

It is worth noting that for non-magnetic materials the complex index of re-
fraction n holds the same information as the complex permittivity €, and the
two are related by ¢ = n?+k? and €’ = 2nk. The conditions for achieving accu-
rate results with DDA when using particles much smaller than the wavelength
Ao are not as clear cut as for larger particles. The only clear rule for nanopar-
ticles is that the discretization must be fine enough to present the shape of the
particle in sufficient detail, however a much finer discretization may in some
cases be necessary and this must unfortunately be determined on case by case
basis.

2.2. Boundary element method

For modeling solid and layered core-shell particles the surface integral equa-
tion method (SIE) starts by dividing the structure into homogeneous regions,
i.e., regions with a constant refractive index. Then, with the surface equiv-
alence principle and application of the electromagnetic interface conditions -
continuity of the tangential components of the electric field E and the magnetic
field H - the original problem of solving Maxwell’s equations in the entire three
dimensional space is reformulated as an equivalent problem of solving current
sources from surface integral equations ﬂ] The resulting surface integral equa-
tions are discretized using the boundary element method (BEM) with Galerkin’s
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testing procedure and Rao—Wilton—Glisson (RWG) functions. In this process,
the equivalent surface current densities on the surfaces, electric J and mag-
netic M, are first approximated with a linear combination of the RWG basis
functions HE] Then in Galerkin’s method, the equations are multiplied with
testing functions that are identical with the basis functions via a symmetric L?
product. Special integration routines are necessary to evaluate the associated
singular integrals with sufficient accuracy @, @], in particular, in the case of
strongly resonating particles and in the near field regions. By solving the matrix
equation, the coefficients of the RWG approximations of the equivalent current
densities on the interfaces of the regions can be determined. With these coeffi-
cients both the near and far fields can be evaluated outside the surfaces. The
scattering and absorption efficiencies can be obtained with the BEM matrices
as shown in [36)].

3. Results

3.1. Parameters and geometry

Scattering and absorption efficiencies were calculated for different particles
and densities of discretization, with special attention paid to the positions of the
plasmonic absorption and scattering peaks. The particles that were studied were
two D = 10 and 100 nm diameter silver spheres, a round cornered cube with a
a = 50nm side length and two 50 nm diameter spherical silica-silver core-shell
particles with diameter ratios of 0.6 and 0.9. Three numbers of dipoles were
used for each particle, 10°, 5 x 10° and 10°. Even larger numbers of dipoles are
possible, especially by using ADDA, however a limit had to be drawn somewhere
in order to keep resources used at a reasonable level. The discretizations can be
seen in Table [

The material properties of silver are calculated using the Drude model

€ag(Xo) = €00 — (;\\2)2 1. ; (6)

1+ zi‘—g
with values esc = 5.5, A, = 130nm and A\q = 30 pm, which were calculated from
data by Johnson and Christy [37] by Wallén et al. [38]. All of the DDA data
that are presented in the figures were calculated using DDSCAT 7.3 with the
Gutkowicz-Krusin & Draine polarizability (GKDLDR), and ADDA was used to
confirm that the results were not dependent on the code, but a property of the
method.

The two sizes of silver spheres were chosen because they behave differently in
the plasmonic region, as for the small D = 10 nm sphere absorption dominates,
whereas for the D = 100 nm sphere scattering is more important.

The shape of the round cornered cube was constructed by using a su-
perquadric equation

a\P
2l + b + 2 = () (7)
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Figure 1: A mesh similar to the one used in BEM for the rounded cube calculations. This
particular mesh has 864 elements. The exponent from Eq. (@) is p = 10.

Table 1: The lattice spacings for the shapes and discretizations that were used.

Shape 10° dipoles 5 -10° dipoles 10° dipoles
10 nm sphere 0.175nm 0.102nm 0.081 nm
100 nm sphere 1.753 nm 1.021 nm 0.813nm
rounded cube 1.085 nm 0.624 nm 0.49nm
both core-shell particles 0.876 nm 0.51nm 0.406 nm

with p = 10 as the exponent and @ = 50 nm. It should be noted that the rounded
cube is different from the other particles because it does not have spherical
symmetry. The DDA computations were only performed for the orientation
where ko||# and E"¢||g, i.e., no orientational averaging was used. An example
of what a rounded cube model produced using Eq. (@) looks like can be seen in
Fig.

Two core-shell particles were also considered in order to test DDA with
particles that have more complex structure. Both of the core-shell particles
consisted of a spherical silica core surrounded by a concentric spherical silver
shell. The refractive index of silica was set to constant ngio, = 1.50. As
mentioned before, two different core-to-shell ratios were used, Deore/Dshenr =
0.6 and Dore/Dspen; = 0.9. The outer diameters of both particles were 50 nm.

Simulating infinitely long structures is possible using DDSCAT @] and this
was also taken advantage of. Two infinite structures were tested, namely the
internal electric fields of a 50 nm thick infinite silver film and a 100 nm diameter
infinite cylinder were calculated for the case of an incoming plane wave with
Ao = 400nm. For both the cylinder and the film the dipole lattice spacing
d = 1nm was used.

The DDA results were compared to BEM, which has been found to have
good convergence in all of the regions where comparisons were made.
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Figure 2: The absorption and scattering efficiencies of a 100 nm diameter silver sphere in
vacuum, calculated using DDA, BEM and the analytic Mie solution.

The DDA was also compared to another volume integral based method of
moments (MoM) implementation, which is more flexible in the choice of dis-
cretization grid. Instead of using dipole approximation with polarization factors,
this method solves the volume integral equation using other basis and testing
functions.

3.2. Convergence with increasing dipole count

Convergence with increasing dipole count can be seen in Figs. for the
100 nm sphere, the 10 nm sphere, the 50 nm round cornered silver cube, and the
two core-shell particles with ratios Deore/Dspenr = 0.6 and Deope/Dspenr = 0.9,
respectively. All of these results are compared with BEM and for the spheres
and the core-shell particles with the analytic Mie solutions. In general, quite a
large number of dipoles seems to be necessary until the results start to converge.
For the 100nm and 10nm spheres, the location of the resonance peak of the
DDA data is quite close to the analytic solution; however, the amplitude of the
resonance is lower. The best case scenario for DDA seems to be the 100 nm
sphere, while the case of the rounded cube also converges faster than the other
particles tested. DDA has great difficulties with the core-shell particles and still
cannot correctly find the plasmonic resonance for the case with ratio 0.9 even
when using up to 108 dipoles.

3.8. Internal fields

The internal electric fields were also calculated for selected particles and
wavelengths. Fig. [[illustrates what happens to the internal field as disctretiza-
tion is made finer in the case of the absorption peak in the 10 nm silver sphere.

Similarly to Fig. [0 the internal fields of an infinitely long 100 nm diameter
silver cylinder and an infinite 50 nm thick silver film were also calculated. The
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Figure 3: The absorption and scattering efficiencies of a 10nm diameter silver sphere in
vacuum, calculated using DDA, BEM and the analytic Mie solution.
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with a core-shell ratio of 0.6, in vacuum, calculated using DDA, BEM and the analytic Mie
solution. Note that the layer of dipoles which represents the silver shell in DDA is relatively
thin and this compounds with the problems of getting a correct field at the surface of the
particle as all of the dipoles that should dictate the particle’s behavior are there.
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Figure 7: The strength of the electric field along the z-axis of a 10nm Ag sphere, through its
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the wave travels along the direction of the z-axis, i.e., ko||# and Ep||j. The boundaries of
the sphere are at x = —0.005 yum and = = 0.005 um. Note that while the internal fields vary
strongly for the different discretizations, the external fields stay fairly similar.

variation of the electric field along a line that goes through the cylinder per-
pendicularly to its axis can be seen in Fig. [§] for the cases where the cylinder is
parallel and perpendicular to the incoming field, respectively. The variation of
the electric field along a line that goes through the 50 nm thick silver film can
be seen in Fig. @

8.4. Dependence of accuracy on the complex refractive index

In order to study the region of anomalously low performance of DDA further,
a sphere with diameter D = 0.1 um was tested at A = 400nm using several
different complex refractive indices n. Specifically, the internal electric field
within the sphere along its x-axis (ko||#) was calculated, because it was found
that the accuracy problems characteristic of plasmonic particles were always
accompanied by a strongly varying internal electric field. The fields were then
compared with results produced by the SIE based BEM, for which the same
problems do not appear. The results of these these calculations can be seen in
Fig. For DDA 10° dipoles were used in these calculations.

One might think that the unphysical internal electric field in Fig. arises
from the vicinity of the plasmonic resonance; however, it was found that the
same variation in the electric field arises also when the absolute value of the
refractive index is kept at || = 1.5. Other values of material properties were
also tested from |n| = 0.71 to || = 2.24 or in terms of €., |e,| = 0.5 and |e,| = 5.
They all showed the same result; always when the real part of n approaches zero
the internal electric field of the particle starts to oscillate strongly. An important
feature is also that both ADDA and DDSCAT produced similar results. Several

10
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Figure 11: The internal electric field of a 100nm diameter silver sphere calculated using
different polarizabilities implemented in ADDA. Wavelength is 400 nm, refractive index is
n = 0.032496 + 2.000264¢ and the lattice spacing is 1.667 nm. The different polarizabilities
used in the figure are the corrected lattice dispersion relation (CLDR) [25], the digitized
Green’s function (DGF) [26], the radiative reaction correction (RRC) [28], the default lattice
dispersion relation (LDR) [29], the Clausius-Mossotti polarizability (CM) and Lakhtakia’s
formulation (LAK) i@}

different polarizabilities and numerical methods were also tested, and because
of the fineness of the discretization, they all produced almost identical electric
fields. This means that although the field looks random, it is in fact specific
to the discretization. An example of the influence of different polarizabilities
can be seen in Fig. [[Il It should be noted, however, that using the FCD- or
[GT-interaction instead of the more traditional point-interaction, may lead to
different results in the long wavelength limit.

3.5. Effect of the cubic discretization grid

We also attempted to compute the optical properties of a spherical silver par-
ticle D = 100nm at A = 400 nm using another volume-integral-equation (VIE)
based method of moments, which allows the use of different kinds of discretiza-
tions. We apply so-called JVIE-formulation @] employing piecewise constant
basis and testing functions associated with tetrahedral or cubic elements. The
sphere was discretized with 4357 tetrahedral elements or 64 x 64 x 64 cubic grid.

Here it was found that the problems depend on the choice of the compu-
tational grid. As can be seen in Fig. 2 a cubic grid produced the same
problematic results as DDA, whereas the results produced by a tetrahedral grid
were accurate and convergence was achieved in a reasonable time and with far
fewer elements. It should be noted that in contrast to the DDA, the applied
JVIE-formulation attempts to enforce the interface conditions to be valid in a
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Figure 12: The y-component of the electric field along the z-axis of a 10nm silver sphere,
through its center, at 400 nm wavelength. The curves were calculated using a VIE based
method of moments with two different kinds of discretizations, cubical and tetrahedral. The
incident electric field is polarized along the y-axis and the wave travels along the direction
of the z-axis, i.e., ko||Z and Ey||j. The boundaries of the sphere are at x = —0.05 yum and
z = 0.05 pm.

weak sense. Hence, the method tries to model surfaces exactly as they are dis-
cretized. Despite this fundamental difference between the DDA and the JVIE
with cubic cells, it is interesting that both methods show similar breakdown in
the case of plasmonic nanoparticles. It should be noted, however, that piecewise
constant basis functions for cubic elements may not span an appropriate basis
since they do not have enough degrees of freedom to model surface charges.
This, in turn, may give rise to spurious charges which may be detrimental to
the stability and the solution accuracy.

More specifically, the Helmholtz decomposition states that any L? vector
function can be represented as

f=Vx5+Vu (8)

in which v and u belong to the appropriate function spaces (see, e.g. ]
and references therein). The harmonic part of the Helmholtz decomposition is
included in u. The Vu functions are related to equivalent surfaces charges when
piecewise constant basis functions are used. The number of faces in a given mesh
is Ny. For a tetrahedral mesh, it can be shown that the dimension of this space
is Ny —1 assuming that the object is simply-connected. One linearly dependent
face charge is due to the charge neutrality—with the piecewise constant basis
it is impossible to represent non-zero total charge. For a cubic mesh, however,
the number of degrees of freedom for the Vu functions is less that Ny — 1. This
means that surface charges are not associated to the faces of cubes or there
are too many dependent surface charges. Detailed analysis is, however, out of
the scope of this paper. More discussion on the significance of triangular and

14



265

270

275

280

285

290

295

300

quadrilateral grids and linear basis functions can be found, for example in ﬂﬂ]

4. Discussion

It is clear from Figs. that a very large number of dipoles in DDA is
needed in order to get results with good accuracy. Even in this case the internal
electric field is still unphysical and shows no improvement, as can be seen in Fig.
[l This is in agreement with the region of slow convergence previously found by
Yurkin [19, [20], i.e. Re[2] — 0, or in terms of permittivity e, = ¢ +i€”, € < 0
and €’ — 0. A similar conclusion was previously also made by Andersen et al.
] for SiO2 and SiC particles in the infrared region. The problems seem to
originate from the surface of the structure. This has been suggested before by
Yurkin et al. HE, ], as well as by Andersen et al. ﬂﬁ] and seems especially
clear from Figs. [l and The cases with the worst problems are indeed the
ones with the largest fractions of dipoles on surfaces.

The problems with the plasmonic particles can be understood by examining
the difference between the polarizability of the volume elements that are used on
the surface in DDA and the polarizabilities of the elements that would have to
be used in order to get the shape of the surface modeled correctly. At the long
wavelength limit all of the volume elements in DDA have the same Clausius—
Mossotti polarizability acar, which is essentially the polarizability of a dielectric
sphere or a cube. Of course, a smooth surface cannot be constructed out of a
cubic grid, except for the special case of infinite planar surfaces.

For a curved surface, different points in the cubic grid will have different
distances from the ideal surface modeled. If the depth of a dipole from the
surface of the model is smaller than the radius of the volume of the material
that the dipole is meant to represent, it seems reasonable to treat this volume as
a truncated version of the element that is otherwise used. Here it is important
to note that for a curved surface and a cubic grid there will be a variety of
different truncations, no matter how fine the discretization. In fact, the finer
the discretization, the larger the variety of shapes of volume elements at the
surface.

The truncated element is no longer symmetric and consequently its polar-
izability will also be asymmetric. The shape of a volume element is taken into
account by the use of the source dyadic L in Eq. (). The general form of L is

= 1 i
L=— —ds’ 9
47T 58 7"/2 ( )
where 6.5 is the surface of the volume element and 7 is the surface normal. As
has been shown by Yaghjian M], as long as the origin stays inside the volume

element, the diagonal elements of L always satisfy

Lyw+ Lyy+L..=1 . (10)
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The polarizability tensor of an arbitrarily shaped volume element is

B —1

T+ (e — 1)i]} : (11)

jo]]

which can be arrived at by discretizing and reorganizing Eq. (). When L is
diagonal the diagonal elements are called the depolarization factors L;; = N;
and the polarizability tensor & also becomes diagonal

e — 1

i = Vv )
O T Ni(e, — 1)

(12)
which reduces to the Clausius-Mossotti polarizability when the N; = %, i.e., for
a sphere or a cube. Now if we look at Eq. ([2), we see that «; has a singularity
and also changes its sign at

1
e =1 N (13)
which turns out to be the same formula that Andersen et al. ] came up with.

Our view is that the differences between the DDA solution and an analytic
solution are not caused by resonant behavior of the individual elements in DDA,
but rather by the lack of such behavior. In other words, if the elements on the
surface had correct polarizabilities, they would have resonances at different val-
ues of € depending on their shape, instead of just at ¢ = —2, as is the case in
the current implementations of DDA, which use the same polarizability for all
of their elements. Under the usual conditions for DDA, i.e., when € > 0, no res-
onant behavior can occur and the influence of the finite error in polarizabilities
at the surface can be made negligible, because the number of dipoles within the
particle vastly outnumber the dipoles on the surface. However, in the region
where resonant behavior is possible, i.e., when € < 0, the error in the surface
polarizability can grow very large and so also a very large number of dipoles is
needed in order to compensate for the error on the surface.

Surface features made up of multiple dipoles that are due to the cubic grid
in DDA may have their own additional resonances, as may be seen in the left
panel of Fig. [[4l These should not appear if the shapes of the volume elements
on the surface are properly taken into account.

Now, if we actually solve Eq. (@) for the case of a sphere intersected by a
plane normal to the z-axis, we get

1 cos By 1 3
L. =- - ) +=(1- 14
22 = 5 (cos@o |COS€O|) + 5 ( cos 90) , (14)
1
Ly =Ly, = yr [cos(300) — 9cosby + 8] . (15)

Here the angle 0y gives us the intersection of the plane and the sphere, g = 7/2
corresponds to a hemisphere and 0y = 7 corresponds to a complete sphere. It is
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Figure 13: The components of the self dyadic L for a sphere intersected by a plane normal to
the z-axis. The angle 6 is the angle between the intersection and the z-axis, the center of the
sphere being in the origin. Only the cases where the origin is inside the shape are considered,
ie. w/2 <0y <.

reasonable to only consider the cases where the center of the element is inside
the volume, as the whole point of having an exclusion volume is to contain that
center. The values the L;; go through can be seen in Fig. [[3] L.. varies between
1/3 and 2/3, while the L., and L,, vary between 1/6 and 1/3. Looking at
Eq. ([I3) we see that these correspond with resonances at —2 < ¢, < —1/2 and
—6 < €. < —2, respectively. It is also notable that when the origin is inside
of the volume, then L., is always either larger than or equal to Lz, and Ly,,
making the component which is perpendicular to the particle’s surface the one
more likely to cause problems.

If the assumption that depolarization factors of truncated cubes behave sim-
ilarly to truncated spheres holds, we see that the volume elements on a surface
that is close to perpendicular to the external electric field are those most likely
to cause problems. This is because the dipoles on surfaces that are parallel to
the electric field £°“! can only have their singularities at very negative values
of €. It should also be noted that near the singularity the direction of the
polarizability can also vary wildly compared to the ideal case, because the sign
of «; is different on different sides of the singularity.

If we look at the strength of the electric field on the surface of the 10 nm
silver sphere at its absorption peak, we can see how the electric field seems to
be concentrated on the ’steps’ that have been caused by the discretization. This
is presented in Fig. [4l The same can be observed, though less clearly, for the
100 nm sphere at its scattering peak, as seen in Fig. We also see that
the strongest variation in the electric field on the surface does seem to happen
around the poles.

Also, for the infinite cylinders seen in Fig. [8land the case of the infinite film
in Fig. [@ we see that the structures which only have surfaces parallel to the
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Figure 14: The strength of the electric field on the surface of a 106 dipole 10 nm silver sphere
at the wavelength of 356.6nm, i.e., at the absorption peak. The incident electric field is
polarized along the y-axis and the wave travels along the z-axis. The field is strongest at the
steps which are caused by the cubic discretization.

iz I3
L= “s

Figure 15: The strength of the electric field on the surface of a 10% dipole 100 nm silver sphere
at the wavelength of 400.8 nm, i.e., at the computed scattering peak. The incident electric
field is polarized along the y-axis and the wave travels along the z-axis. The field is strongest
at the steps which are caused by the cubic discretization.
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electric field behave well. The major difference between the left and right side
of Fig. B is that on the right the electric field is partly perpendicular to the
surface of the cylinder and this leads to charge density on the surface.

This knowledge may be used in order to predict whether a particular shape is
likely to require a very large number of dipoles before good accuracy is achieved.
It will not give us exact numbers, but it may still be used as a rule of thumb.
The defining factors for the internal field seem to be whether the particle’s
surfaces are such that they would need to consist of truncated elements, and
if so, whether one may expect the electric field to be perpendicular to those
surfaces. If such surfaces exist, then slow convergence with dipole count may be
expected, especially if the structure is thin, such as in the case of the core shell
particles.

Unlike in DDA, when an irregular tetrahedral grid is used, all of the dipoles
at the surface are more likely to be about at the same depth from the surface,
and so the polarizability at the surface does not vary as much as in the case of
a regular cubic grid.

It should also be noted that the polarizability given by Eqs. (@) and ()
is, similarly to the Clausius—Mossotti polarizability, only accurate at the long
wavelength limit. Most implementations of DDA that are used in practice in-
clude some kind of finite wavelength correction. In practice it may be possible to
circumvent the problems with plasmonic particles by using a geometry correc-
tion similar to that introduced by Rahmani et al. HE] or Collinge and Draine

|, which were developed to make DDA more accurate at long wavelengths
and for high indices of refraction. They also already take the finite sizes of
the dipoles into account, although they also require the static-limit solution of
the problem to be known, which limits their usefulness. Testing these, however
is outside of the scope of this work. Another potential solution is to use the
weighted discretization (WD) scheme developed by Piller @, @] This method
takes the shape of the particle’s surface into account by calculating an effective
permittivity for the surface dipoles by using volume fraction weighting and the
electromagnetic interface conditions between the particle and its surrounding
medium. Again, it is unfortunately outside the scope of this article to test WD
in the problem region.

5. Conclusions

The convergence of DDA with increasing dipole count has been tested in
a region of slow convergence previously discovered by Yurkin HE, @], using
different particle shapes and silver as the plasmonic material. We have found
that the internal electric fields of the particles are strongly dependent on the
discretization used, and that they vary in an unphysical way. These results are
compared with a boundary element method (BEM).

Our conclusions support the view, that the problems with DDA for plas-
monic particles are caused by the improper handling of the surfaces when the
complex index of refraction of the material n becomes entirely or almost purely
imaginary. For complex permittivity e, this corresponds to the region where
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¢ < 0and ¢’ << 1. This is similar to results that has been reported by Yurkin
et al. HE, }, and Andersen et al. ] in relation to infrared absorption of
SiO5 and SiC particles.

Our interpretation is that in DDA the polarizabilities of the volume elements
on the surface of the particle are identical to those inside and because of this,
they do not have resonances at the same values of €., as they would if the
shapes of those elements was properly taken into account. In other words, the
elements on the surface do not behave resonantly, as they should if their shapes
were properly taken into account. This leads to extremely large errors on the
surface, as compared to the ideal case where the resonances appear.

It is intuitively easy to understand that when the behavior of an object is
dominated by a surface phenomenon, such as the LSPR, it becomes important
that the behavior of the surface is properly modeled. Especially the cases of the
core-shell particles in Figs. Bland [6 which have a large part of the silver dipoles
located on surfaces, are badly affected by surface errors.

We propose that the physical explanation presented here can be used to
predict when problems can be expected with DDA, in the described region of
the complex refractive index. Surfaces which cannot be accurately portrayed
by cubical dipoles and which can also be expected to be perpendicular to the
electric field are an indication of poor performance, especially if the particle also
happens to be thin in the same area. It may be possible, that these problems may
be entirely avoided in the future if a proper correction for DDA is introduced.

However, we suggest that for now in order to ensure good accuracy with
reasonable computation times in the problematic region, a surface integral based
method, such as the boundary element method (BEM), may be a better option
in the corresponding region of the complex refractive index.
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