47 research outputs found

    2D Time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks

    Full text link
    In wireless networks, interferences between trans- missions are modelled either in time or frequency domain. In this article, we jointly analyze interferences in the time- frequency domain using a stochastic geometry model assuming the total time-frequency resources to be a two-dimensional plane and transmissions from Internet of Things (IoT) devices time- frequency patterns on this plane. To evaluate the interference, we quantify the overlap between the information packets: provided that the overlap is not too strong, the packets are not necessarily lost due to capture effect. This flexible model can be used for multiple medium access scenarios and is especially adapted to the random time-frequency access schemes used in Low-Power Wide-Area Networks (LPWANs). By characterizing the outage probability and throughput, our approach permits to evaluate the performance of two representative LPWA technologies Sigfox{\textsuperscript \textregistered} and LoRaWA{\textsuperscript \textregistered}

    Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation

    Get PDF
    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 22 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders

    Techno-economic analyses for vertical use cases in the 5G domain

    Get PDF
    International audienceThis paper provides techno-economic analyses on the network deployments to cover 4 key verticals, under 5G-NR. These verticals, namely Automotive, Smart city, Long range connectivity and Disaster and emergency support, were chosen to reflect the ONE5G project objective of investigating environments from densely populated cities ("Megacity") to large underserved areas. The work presented covers the network deployment framework including common centralization strategies and the main cost factors. Initial results presented for long range connectivity and emergency support networks provide the cost trade-offs in different deployment options and cost sensitivity to some of the parameters

    Distance-aware relay selection in an energy-efficient discovery protocol for 5G D2D communication

    No full text
    International audienceMassive machine-type communications (mMTC) is one of the main services delivered by the fifth Generation (5G) mobile network. The traditional cellular architecture where all devices connect to the base station is not energy efficient. For this reason, the use of device-to-device (D2D) communications is considered to reduce the energy consumption of mMTC devices. The main idea is to use nearby user equipment (UE) as a relay and establish with it D2D communication. However, the relay selection process also consumes energy, and this consumption can be significant compared to the energy consumed during the data transmission phase. In this paper, we propose a distributed energy-efficient D2D relaying mechanism for mMTC applications. This mechanism favors the selection of the UEs with low path loss with the mMTC device. Through mathematical analysis and simulations, we show that our mechanism allows a reduction of the total energy consumption of mMTC devices (up to 75% compared to direct transmission) when they have an unfavorable link budget. Moreover, our mechanism achieves almost constant energy consumption for a large range of UE densities and distances between the mMTC device and the base station

    Caractérisation de l'exposition d'une population aux ondes électromagnétiques RF: mise en place d'une métrique simplifiée

    No full text
    National audienceCet article présente la mise en place d'une métrique simplifiée qui permettrait d'évaluer l'exposition moyenne d'une population aux ondes électromagnétiques radiofréquences induite par un réseau complet, prenant en compte à la fois l'exposition montante induite par les équipements personnels et l'exposition descendante induite par les stations de base et points d'accès. Cette métrique simplifiée sera construite par une analyse de sensibilité d'un indice d'exposition plus complexe développé dans le cadre du projet européen LEXNET (www.lexnet-project.eu)

    Simple modeling of energy consumption for D2D relay mechanism

    No full text
    International audienceReducing energy consumption is a key requirement for Massive Machine-Type Communication (mMTC) devices operating on battery power. Device-to-Device (D2D) communication is a promising technology that can be used in 5G networks for this purpose. In this paper, we identify the interest of using a D2D relay mechanism compared with a direct link with an unfavorable link budget. We first look for an optimal Relay-MTC device configuration that minimizes the energy consumption. We then compare the energy consumption in direct and relaying mode expressing it in terms of the distance between the base station and the MTC device and between the base station and the relay. We show that when the MTC device is close to the base station, D2D relay mechanism can reduce the energy consumed by the MTC device at the expense of an increase in the global energy consumption (i.e. the energy consumed by the MTC device plus the energy consumed by the relay). On the other hand, when the MTC device is far from the base station, D2D relay mechanism allows reducing both the energy consumption by the MTC device and the global energy consumption
    corecore