15 research outputs found

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Do oceanic loggerhead turtles Caretta caretta associate with oceanographic fronts? Evidence from the Canary Current Large Marine Ecosystem

    Get PDF
    ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey

    Modelling the niche for a marine vertebrate: A case study incorporating behavioural plasticity, proximate threats and climate change

    No full text
    This is the peer reviewed version of the article, which has been published in final form at DOI: 10.1111/ecog.01245. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises. We further contextualise our niche models with fisheries catch data and knowledge of fisheries 'hotspots' to infer threat from fisheries interaction to this population, for animals employing both strategies. Our analysis revealed repeated use of coincident oceanic habitat, over multiple seasons, by all smaller loggerhead turtles, whilst larger neritic foraging turtles occupied continental shelf waters. Modelled habitat niches were spatially distinct, and under the influence of predicted sea surface temperature rises, there was further spatial divergence of suitable habitats. Analysis of fisheries catch data highlighted that the observed and modelled habitats for oceanic and neritic loggerhead turtles could extensively interact with intensive fisheries activity within oceanic and continental shelf waters of northwest Africa. We suggest that the development and enforcement of sustainable management strategies, specifically multi-national fisheries policy, may begin to address some of these issues; however, these must be flexible and adaptive to accommodate potential range shift for this species.National Oceanographic and Atmospheric AgencyCabo Verde Natura 2000British Chelonia GroupMarine Conservation SocietyNatural Environmental Research CouncilPeople’s Trust for Endangered SpeciesSeaWorld Busch GardensSeaturtle.or

    Liver Retransplantation in Patients with HIV-1 Infection: An International Multicenter Cohort Study

    No full text
    Liver retransplantation is performed in HIV-infected patients, although its outcome is not well known. In an international cohort study (eight countries), 37 (6%; 32 coinfected with hepatitis C virus [HCV] and five with hepatitis B virus [HBV]) of 600 HIV-infected patients who had undergone liver transplant were retransplanted. The main indications for retransplantation were vascular complications (35%), primary graft nonfunction (22%), rejection (19%), and HCV recurrence (13%). Overall, 19 patients (51%) died after retransplantation. Survival at 1, 3, and 5 years was 56%, 51%, and 51%, respectively. Among patients with HCV coinfection, HCV RNA replication status at retransplantation was the only significant prognostic factor. Patients with undetectable versus detectable HCV RNA had a survival probability of 80% versus 39% at 1 year and 80% versus 30% at 3 and 5 years (p = 0.025). Recurrence of hepatitis C was the main cause of death in the latter. Patients with HBV coinfection had survival of 80% at 1, 3, and 5 years after retransplantation. HIV infection was adequately controlled with antiretroviral therapy. In conclusion, liver retransplantation is an acceptable option for HIV-infected patients with HBV or HCV coinfection but undetectable HCV RNA. Retransplantation in patients with HCV replication should be reassessed prospectively in the era of new direct antiviral agents
    corecore