27 research outputs found

    A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites

    Get PDF
    Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope

    7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli

    Get PDF
    14 pags., 9 figs.This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.MIT Skoltech Next Generation Program Pilot Grant (to J.M.E.); National Institutes of Health (NIH) [R01-CA080024 to J.M.E.]; NIEHS Center Grant [P30-ES002109 (to Center for Environmental Health Sciences, which provided access to NGS facilities)]; Skoltech (to T.S.Z.); MICINN [PID2020-116620GB-I00 to C.G.]; Ministry of Science and Higher Education Russian Federation [07515-2021-1049 to A.V.A. – synthesis and UV/CD studies]. Funding for open access charge: Skoltech.Peer reviewe

    Data set on G4 DNA interactions with human proteins

    No full text
    Guanine-rich DNA/RNA fragments can fold into G-quadruplexes (G4s) – non-canonical four-strand secondary structures. The article contains data on quadruplex interaction with human proteins. Binding of three topologically different G4 structures to more than 9000 human proteins was analyzed. Physicochemical methods were used to verify the results.The dataset was generated to identify the protein targets for DNA quadruplex structures for the purpose of better understanding the role of the structures in gene expression regulation. Presented data include functional interpretation of obtained gene lists, visualized with Cytoscape

    NMR structure of emfourin, a novel protein metalloprotease inhibitor: Insights into the mechanism of action

    No full text
    Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis. Arguably, emfourin-like inhibitors participate in the regulation of bacterial pathogenesis by controlling PLP activity. Here, we determined the 3D structure of M4in using solution NMR spectroscopy. The obtained structure demonstrated no significant similarity to known protein structures. This structure was used to model the M4in–enzyme complex and the complex model was verified by small-angle X-ray scattering. Based on the model analysis, we propose a molecular mechanism for the inhibitor, which was confirmed by site-directed mutagenesis. We show that two spatially close flexible loop regions are critical for the inhibitor–protease interaction. One region includes aspartic acid forming a coordination bond with catalytic Zn2+ of the enzyme and the second region carries hydrophobic amino acids interacting with protease substrate binding sites. Such an active site structure corresponds to the noncanonical inhibition mechanism. This is the first demonstration of such a mechanism for protein inhibitors of thermolysin family metalloproteases, which puts forward M4in as a new basis for the development of antibacterial agents relying on selective inhibition of prominent factors of bacterial pathogenesis belonging to this family

    Genetically encoded calcium indicator with NTnC-like design and enhanced fluorescence contrast and kinetics

    No full text
    Background The recently developed genetically encoded calcium indicator (GECI), called NTnC, has a novel design with reduced size due to utilization of the troponin C (TnC) as a Ca²⁺-binding moiety inserted into the mNeonGreen fluorescent protein. NTnC binds two times less Ca²⁺ ions while maintaining a higher fluorescence brightness at the basal level of Ca²⁺ in neurons as compared with the calmodulin-based GECIs, such as GCaMPs. In spite of NTnC’s high brightness, pH-stability, and high sensitivity to single action potentials, it has a limited fluorescence contrast (F-Ca²⁺/F⁺Ca²⁺) and slow Ca²⁺ dissociation kinetics. Results Herein, we developed a new NTnC-like GECI with enhanced fluorescence contrast and kinetics by replacing the mNeonGreen fluorescent subunit of the NTnC indicator with EYFP. Similar to NTnC, the developed indicator, named iYTnC2, has an inverted fluorescence response to Ca²⁺ (i.e. becoming dimmer with an increase of Ca²⁺ concentration). In the presence of Mg²⁺ ions, iYTnC2 demonstrated a 2.8-fold improved fluorescence contrast in vitro as compared with NTnC. The iYTnC2 indicator has lower brightness and pH-stability, but similar photostability as compared with NTnC in vitro. Stopped-flow fluorimetry studies revealed that iYTnC2 has 5-fold faster Ca²⁺ dissociation kinetics than NTnC. When compared with GCaMP6f GECI, iYTnC2 has up to 5.6-fold faster Ca²⁺ association kinetics and 1.7-fold slower dissociation kinetics. During calcium transients in cultured mammalian cells, iYTnC2 demonstrated a 2.7-fold higher fluorescence contrast as compared with that for the NTnC. iYTnC2 demonstrated a 4-fold larger response to Ca²⁺ transients in neuronal cultures than responses of NTnC. iYTnC2 response in neurons was additionally characterized using whole-cell patch clamp. Finally, we demonstrated that iYTnC2 can visualize neuronal activity in vivo in the hippocampus of freely moving mice using a nVista miniscope. Conclusions We demonstrate that expanding the family of NTnC-like calcium indicators is a promising strategy for the development of the next generation of GECIs with smaller molecule size and lower Ca²⁺ ions buffering capacity as compared with commonly used GECIs

    cNTnC and fYTnC2, Genetically Encoded Green Calcium Indicators Based on Troponin C from Fast Animals

    No full text
    NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively

    Short Duplex Module Coupled to G-Quadruplexes Increases Fluorescence of Synthetic GFP Chromophore Analogues

    No full text
    Aptasensors became popular instruments in bioanalytical chemistry and molecular biology. To increase specificity, perspective signaling elements in aptasensors can be separated into a G-quadruplex (G4) part and a free fluorescent dye that lights up upon binding to the G4 part. However, current systems are limited by relatively low enhancement of fluorescence upon dye binding. Here, we added duplex modules to G4 structures, which supposedly cause the formation of a dye-binding cavity between two modules. Screening of multiple synthetic GFP chromophore analogues and variation of the duplex module resulted in the selection of dyes that light up after complex formation with two-module structures and their RNA analogues by up to 20 times compared to parent G4s. We demonstrated that the short duplex part in TBA25 is preferable for fluorescence light up in comparison to parent TBA15 molecule as well as TBA31 and TBA63 stabilized by longer duplexes. Duplex part of TBA25 may be partially unfolded and has reduced rigidity, which might facilitate optimal dye positioning in the joint between G4 and the duplex. We demonstrated dye enhancement after binding to modified TBA, LTR-III, and Tel23a G4 structures and propose that such architecture of short duplex-G4 signaling elements will enforce the development of improved aptasensors
    corecore