8,227 research outputs found
Multi-Agent Cooperation for Particle Accelerator Control
We present practical investigations in a real industrial controls environment
for justifying theoretical DAI (Distributed Artificial Intelligence) results,
and we discuss theoretical aspects of practical investigations for
accelerator control and operation. A generalized hypothesis is introduced,
based on a unified view of control, monitoring, diagnosis, maintenance and
repair tasks leading to a general method of cooperation for expert systems
by exchanging hypotheses. This has been tested for task and result sharing
cooperation scenarios. Generalized hypotheses also allow us to treat the
repetitive diagnosis-recovery cycle as task sharing cooperation. Problems
with such a loop or even recursive calls between the different agents are
discussed
A Rule-Based Consultant for Accelerator Beam Scheduling Used in the CERN PS Complex
The CERN PS accelerator complex consists of nine interacting accelerators which work together to produce
particle beams for different end users, varying in particle type, energy, time structure, and geometry. The beam
production schedule is time sliced and depends on the current operational requirements and dynamically on the
accelerator status, so that production schedule changes occur in real time. Many potential schedules are not valid due
to various system constraints and these constraints vary over time as new operational modes are introduced. In order
to ensure that only valid schedules are given to the complex, an automated tool has been developed to indicate
whether a potential schedule is valid or not. This presentation describes the method by which the validity of a beam
schedule is determined and how this method was implemented using a rule-based approach based on SQL, avoiding
the use of an expert system shell. Both the data to instantiate the rules and the rules themselves are kept in an Oracle
data base. The SQL interpreter provides the inference engine for this knowledge-based system. A few examples are
presented and the running experience with the tool is discussed
3D Raman mapping of the collagen fibril orientation in human osteonal lamellae
AbstractChemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues
Identification of Young Stellar Object candidates in the DR2 x AllWISE catalogue with machine learning methods
The second Data Release (DR2) contains astrometric and photometric
data for more than 1.6 billion objects with mean magnitude 20.7,
including many Young Stellar Objects (YSOs) in different evolutionary stages.
In order to explore the YSO population of the Milky Way, we combined the
DR2 database with WISE and Planck measurements and made an all-sky
probabilistic catalogue of YSOs using machine learning techniques, such as
Support Vector Machines, Random Forests, or Neural Networks. Our input
catalogue contains 103 million objects from the DR2xAllWISE cross-match table.
We classified each object into four main classes: YSOs, extragalactic objects,
main-sequence stars and evolved stars. At a 90% probability threshold we
identified 1,129,295 YSO candidates. To demonstrate the quality and potential
of our YSO catalogue, here we present two applications of it. (1) We explore
the 3D structure of the Orion A star forming complex and show that the spatial
distribution of the YSOs classified by our procedure is in agreement with
recent results from the literature. (2) We use our catalogue to classify
published Science Alerts. As measures the sources at multiple
epochs, it can efficiently discover transient events, including sudden
brightness changes of YSOs caused by dynamic processes of their circumstellar
disk. However, in many cases the physical nature of the published alert sources
are not known. A cross-check with our new catalogue shows that about 30% more
of the published alerts can most likely be attributed to YSO activity.
The catalogue can be also useful to identify YSOs among future alerts.Comment: 19 pages, 12 figures, 3 table
OUTLINE OF THE MTCIP-1A THEORY OF INTERFACE SEGREGATION
Large and increasing interest is shown for the description of the surface chemical composition, surface free energy and other surface characteristics of solids in view of their large practical importance. The problem, however, has not been solved so far even on a qualitative level. The new MTCIP-1A (Modern Thermodynamic Calculation of Interface
Properties - First Approximation) method is shortly outlined and illustrated by results for an AuPd alloy
Guidelines for fabrication of hybrid microcircuits
Document is summary of approaches that may be taken in designing hybrid microcircuits similar to those for aerospace application
Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors
A two-band model of a disordered semiconductor is used to analyze dynamical
interaction induced weakening of localization in a system that is accessible to
experimental verification. The results show a dependence on the sign of the
two-particle interaction and on the optical excitation energy of the
Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure
- …