120 research outputs found

    Eficacia del análogo alquil-lisofosfolípido edelfosina en el tratamiento de la leishmaniosis, generación de resistencia y su utilidad potencial en terapia combinada

    Get PDF
    Memoria que presenta Rubén Eduardo Varela Miranda, para optar al grado de Doctor, en el Departamento de Biología Animal, Parasitología, Ecología y Edafología-Química Agrícola (Universidad de Salamanca-Centro de Investigación del Cáncer).Mis más sinceros agradecimientos a la Secretaria de Estado de Investigación Desarrollo e Innovación del Gobierno de España y al Fondo Social Europeo: que con el subprograma de becas Torres Quevedo, aportaron financiación para desarrollar este trabajo. A la Empresa APOINTECH por aportar financiación a las investigaciones realizadas.Peer Reviewe

    Inhibition of granulomatous inflammation and prophylactic treatment of schistosomiasis with a combination of edelfosine and Praziquantel

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License.[Background]: Schistosomiasis is the third most devastating tropical disease worldwide caused by blood flukes of the genus Schistosoma. This parasitic disease is due to immunologic reactions to Schistosoma eggs trapped in tissues. Egg-released antigens stimulate tissue-destructive inflammatory and granulomatous reactions, involving different immune cell populations, including T cells and granulocytes. Granulomas lead to collagen fibers deposition and fibrosis, resulting in organ damage. Praziquantel (PZQ) is the drug of choice for treating all species of schistosomes. However, PZQ kills only adult Schistosoma worms, not immature stages. The inability of PZQ to abort early infection or prevent re-infection, and the lack of prophylactic effect prompt the need for novel drugs and strategies for the prevention of schistosomiasis. [Methodology/Principal Findings]: Using in vitro and in vivo approaches, we have found that the alkylphospholipid analog edelfosine kills schistosomula, and displays anti-inflammatory activity. The combined treatment of PZQ and edelfosine during a few days before and after cercariae infection in a schistosomiasis mouse model, simulating a prophylactic treatment, led to seven major effects: a) killing of Schistosoma parasites at early and late development stages; b) reduction of hepatomegaly; c) granuloma size reduction; d) down-regulation of Th1, Th2 and Th17 responses at late post-infection times, thus inhibiting granuloma formation; e) upregulation of IL-10 at early post-infection times, thus potentiating anti-inflammatory actions; f) down-regulation of IL-10 at late post-infection times, thus favoring resistance to re-infection; g) reduction in the number of blood granulocytes in late post-infection times as compared to infected untreated animals. [Conclusions/Significance]: Taken together, these data suggest that the combined treatment of PZQ and edelfosine promotes a high decrease in granuloma formation, as well as in the cellular immune response that underlies granuloma development, with changes in the cytokine patterns, and may provide a promising and effective strategy for a prophylactic treatment of schistosomiasis.This work was supported by grants from the Junta de Castilla y León (SA342U13, CSI052A11-2, and CSI221A12-2), Real Federación Española de Fútbol-Sociedad Española de Medicina Tropical y Salud Internacional (RFEF-SEMTSI 2013), Spanish Ministerio de Economía y Competitividad (SAF2011-30518, SAF2014-59716-R, and RD12/0036/0065 from Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, cofunded by the Fondo Europeo de Desarrollo Regional of the European Union), and European Community’s Seventh Framework Programme FP7-2007-2013 (grant HEALTH-F2-2011-256986, PANACREAS).Peer Reviewe

    In vitro and in vivo anti-schistosomal activity of the alkylphospholipid analog edelfosine

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. Five species of Schistosoma are known to infect humans, out of which S. haematobium is the most prevalent, causing the chronic parasitic disease schistosomiasis that still represents a major problem of public health in many regions of the world and especially in tropical areas, leading to serious manifestations and mortality in developing countries. Since the 1970s, praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis, but concerns about relying on a single drug to treat millions of people, and the potential appearance of drug resistance, make identification of alternative schistosomiasis chemotherapies a high priority. Alkylphospholipid analogs (APLs), together with their prototypic molecule edelfosine (EDLF), are a family of synthetic antineoplastic compounds that show additional pharmacological actions, including antiparasitic activities against several protozoan parasites. [Methodology/Principal Findings]: We found APLs ranked edelfosine> perifosine> erucylphosphocholine> miltefosine for their in vitro schistosomicidal activity against adult S. mansoni worms. Edelfosine accumulated mainly in the worm tegument, and led to tegumental alterations, membrane permeabilization, motility impairment, blockade of male-female pairing as well as induction of apoptosis-like processes in cells in the close vicinity to the tegument. Edelfosine oral treatment also showed in vivo schistosomicidal activity and decreased significantly the egg burden in the liver, a key event in schistosomiasis. [Conclusions/Significance]: Our data show that edelfosine is the most potent APL in killing S. mansoni adult worms in vitro. Edelfosine schistosomicidal activity seems to depend on its action on the tegumental structure, leading to tegumental damage, membrane permeabilization and apoptosis-like cell death. Oral administration of edelfosine diminished worm and egg burdens in S. mansoni -infected CD1 mice. Here we report that edelfosine showed promising antischistosomal properties in vitro and in vivo.This work was supported by the Spanish Ministerio de Ciencia e Innovación (SAF2011-30518, and RD12/0036/0065 from Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, cofunded by the Fondo Europeo de Desarrollo Regional of the European Union), European Community's Seventh Framework Programme FP7-2007-2013 (grant HEALTH-F2-2011-256986, PANACREAS), Junta de Castilla y León (CSI052A11-2and SA342U13), Sociedad Española de Medicina Tropical y Salud Internacional (RFEF-SEMTSI 2013) and the Universidad de Salamanca (USAL17008).Peer Reviewe

    Standardization of a multiplex real-time PCR test for the identification of Angiostrongylus cantonensis, A. costaricensis and A. vasorum

    Get PDF
    Introduction: Angiostrongyliasis is a disease caused by Angiostrongylus nematodes that is present worldwide. The infections with the highest impact on human and animal health are caused by A. cantonensis, A. costaricensis, and A. vasorum. Clinical forms of the disease in humans are eosinophilic meningitis and abdominal angiostrongyliasis, while the most common effect on dogs are cardiopulmonary damages. It is deemed as an emerging disease as the result of the global dissemination of the African snail Lissachatina fulica, an intermediary host of these parasites. The few diagnostic methods for Angiostrongylus spp. are unspecific, costly, and not very sensitive. It is urgent to develop a sensitive, specific and accessible diagnostic tool for the control of human and animal angiostrongyliasis. Objective: To develop a qPCR multiple test to identify the three pathogenic species of Angiostrongylus. Materials and methods: Through a bio-informatic analysis, we selected a sequence of the ITS-2 region of the Angiostrongylus genome to guarantee the specificity of primers and probes. We extracted DNA from adult parasites as positive control, and from larvae using the DNeasy Blood&Tissue® kit. Quantitative PCR reactions were conducted on a Smartcycler Cepheid® thermocycler using a master mix QuantiTect® kit. DNA from human beings, other parasites and the African snail was used as negative control. Results: The threshold cycle values for positive DNA controls were: 21 for Angiostrongylus cantonensis, 22 for A. costaricensis, and 31 for A. vasorum. In negative controls, the threshold cycle was zero. qPCR showed an amplification efficiency of 2 (100%). Conclusions: A multiple qPCR was standardized at the laboratory for three clinically significant species of Angiostrongylus

    Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species

    Get PDF
    Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.Fil: Ochoa, Rodrigo. Universidad de Antioquia; ColombiaFil: Ortega Pajares, Amaya. University of Melbourne; AustraliaFil: Castello, Florencia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Serral, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Fernández Do Porto, Darío Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Villa Pulgarin, Janny A.. Coorporación Universitaria Remington; ColombiaFil: Varela M., Rubén E.. Universidad Santiago de Cali; ColombiaFil: Muskus, Carlos. Universidad de Antioquia; Colombi

    miR-873-5p targets mitochondrialGNMT-Complex II interface contributing tonon-alcoholic fatty liver disease

    Get PDF
    Objective:Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolicpathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation andfibrosis.The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, isdownregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression.Methods:miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Differentin vitroandin vivoNAFLD murinemodels were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy.Results:We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria.In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinicalmurine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating withhepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation andfibrosis byenhancing fatty acidb-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment.Conclusion:GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activityin the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment

    miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease

    Get PDF
    Objective: Non-alcoholic fatly liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. Methods: miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. Results: We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondria! functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid beta-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. Conclusion: GNMT participates in the regulation of metabolic pathways and mitochondria! functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment. (C) 2019 The Authors. Published by Elsevier GmbH.This work was supported by grants from NIH (US Department of Health and Human services)-R01AT001576 (to S.C.L., J.M.M., and M.L.M.-C.), Ministerio de Economia, Industria y Competitividad: SAF2017-87301-R (to M.L.M.-C.), SAF2015-64352-R (to P.A.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C.), Gobierno Vasco-Departamento de Educacion IT-336-10 (to PA), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD (M.L.M.-C.), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), Asociacion Espanola contra el Cancer (to T.C.D., P.F.-T. and M.L.M.-C.), Mitotherapeutix (to M.L.M.-C.), Daniel Alagille award from EASL (to T.C.D), Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M.-C.), La Caixa Foundation Program (to M.L.M.-C.), Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2019 (to M.L.M.-C.). Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank this work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (to M.V.R.). This work was supported by Fonds National de la Recherche Luxembourg and the Deutsche Forschungsgemeinschaft (C12/BM/3975937, FL/997/7-1, Inter "HepmiRSTAT", to I.B. and F.L.). We thank MINECO for the Severo Ochoa Excellence Accreditation (SEV2016-0644)

    In Vitro and In Vivo Efficacy of Ether Lipid Edelfosine against Leishmania spp. and SbV-Resistant Parasites

    Get PDF
    Leishmaniasis represents a major international health problem, has a high morbidity and mortality rate, and is classified as an emerging and uncontrolled disease by the World Health Organization. The migration of population from endemic to nonendemic areas, and tourist activities in endemic regions are spreading the disease to new areas. Unfortunately, treatment of leishmaniasis is far from satisfactory, with only a few drugs available that show significant side-effects. Here, we show in vitro and in vivo evidence for the antileishmanial activity of the ether phospholipid edelfosine, being effective against a wide number of Leishmania spp. causing cutaneous, mucocutaneous and visceral leishmaniasis. Our experimental mouse and hamster models demonstrated not only a significant antileishmanial activity of edelfosine oral administration against different wild-type Leishmania spp., but also against parasites resistant to pentavalent antimonials, which constitute the first line of treatment worldwide. In addition, edelfosine exerted a higher antileishmanial activity and a lower proneness to generate drug resistance than miltefosine, the first drug against leishmaniasis that can be administered orally. These data, together with our previous findings, showing an anti-inflammatory action and a very low toxicity profile, suggest that edelfosine is a promising orally administered drug for leishmaniasis, thus warranting clinical evaluation
    • …
    corecore