41 research outputs found
Recommended from our members
Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients.
BackgroundWe previously reported the results of a multicentric prospective randomized trial of chemo-refractory metastatic breast cancer patients testing the efficacy of two doses of TGFβ blockade during radiotherapy. Despite a lack of objective responses to the combination, patients who received a higher dose of TGFβ blocking antibody fresolimumab had a better overall survival when compared to those assigned to lower dose (hazard ratio of 2.73, p = 0.039). They also demonstrated an improved peripheral blood mononuclear cell (PBMC) counts and increase in the CD8 central memory pool. We performed additional analysis on residual PBMC using single cell network profiling (SCNP).MethodsThe original trial randomized metastatic breast cancer patients to either 1 or 10 mg/kg of fresolimumab, every 3 weeks for 5 cycles, combined with radiotherapy to a metastatic site at week 1 and 7 (22.5 Gy given in 3 doses of 7.5 Gy). Trial immune monitoring results were previously reported. In 15 patients with available residual blood samples, additional functional studies were performed, and compared with data obtained in parallel from seven healthy female donors (HD): SCNP was applied to analyze T cell receptor (TCR) modulated signaling via CD3 and CD28 crosslinking and measurement of evoked phosphorylation of AKT and ERK in CD4 and CD8 T cell subsets defined by PD-1 expression.ResultsAt baseline, a significantly higher level of expression (p < 0.05) of PD-L1 was identified in patient monocytes compared to HD. TCR modulation revealed dysfunction of circulating T-cells in patient baseline samples as compared to HD, and this was more pronounced in PD-1+ cells. Treatment with radiotherapy and fresolimumab did not resolve this dyfunctional signaling. However, in vitro PD-1 blockade enhanced TCR signaling in patient PD-1+ T cells and not in PD-1- T cells or in PD-1+ T cells from HD.ConclusionsFunctional T cell analysis suggests that baseline T cell functionality is hampered in metastatic breast cancer patients, at least in part mediated by the PD-1 signaling pathway. These preliminary data support the rationale for investigating the possible beneficial effects of adding PD-1 blockade to improve responses to TGFβ blockade and radiotherapy.Trial registrationNCT01401062
Editorial: Nucleic Acid-Associated Inflammation.
Editorial on the Research Topic Nucleic Acid-Associated Inflammation
Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model
International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Les nanocapsules lipidiques chargées en Rhénium-188 : nouvel outil pour la radiothérapie interne du carcinome hépatocellulaire et du gliome
Radiotherapy aims to preserve the irradiation of healthy tissues. For this purpose, lipid nanocapsules loaded with lipophilic complex of rhenium-188 (LNC188Re-SSS) were used to create a localized irradiation after intratumoral injection. Hence, we assessed the feasibility of internal radiation therapy after intra-hepatic LNC188Re-SSS for the treatment of hepatocellular carcinoma (HCC). Secondly, we examined the efficiency of repeated intracranial injections for the treatment of gliomas. The first part of this work describes the interest of internal radiotherapy with LNC188Re-SSS for the treatment of HCC with increased median survival up to 107% in a chemically-induced HCC rat model. Meanwhile, we demonstrated a major benefit in terms of survival, with 83% of animals which were long-term survivors. This therapeutic effect could be explained by the establishment of an adaptive immune response with local recruitment of immune effector cells (CD4+, CD8+...). However, assessment on a weakly immunogenic and radioresistant model (tumor model F98) showed lower benefits in terms of survival. To stimulate an anti-tumor immune response and to optimize therapeutic efficiency, we evaluate the combination of fractionated internal radiotherapy with vaccination of F98 irradiated cells. Although an increase in the recruitment of immune cells was highlighted, the combination of these two strategies did not result in better survival benefit. The prospects offered by this work are twofold: to assess the impact of the angiogenic process in the case of the HCC model and stimulate the immune system in combination with internal radiation therapy for the glioma model.La radiothérapie implique de limiter l'irradiation des tissus sains. Dans ce but, des nanocapsules lipidiques chargées en complexes lipophile de rhénium-188 (NCL188Re-SSS) ont été utilisées afin de créer une irradiation localisée après injection intra-tumorale. Nous avons ainsi évalué la faisabilité d'une radiothérapie interne après injection intra-hépatique de NCL188Re-SSS pour le traitement du carcinome hépatocellulaire (CHC) et, dans un deuxième temps, étudié l'efficacité d'un fractionnement de la dose radioactive après injections intra-crâniennes répétées pour le traitement des gliomes. La première partie de ce travail décrit l'intérêt d'une radiothérapie interne via les NCL188Re-SSS pour le traitement du CHC avec une augmentation de la médiane de survie jusqu'à 107% dans un modèle CHC chimio-induit chez le rat. Dans une seconde partie, nous avons pu démontrer un bénéfice majeur, sur un modèle de gliome, avec 83% des animaux long-survivants. Cette efficacité thérapeutique pourrait s'expliquer par la mise en place d'une réponse immunitaire adaptative avec recrutement local de cellules immunitaires effectrices (CD4+, CD8+...). En revanche, les essais d'une radiothérapie interne nanovectorisée sur un modèle de rat peu immunogène et radiorésistant (modèle tumoral F98) ont montré des bénéfices moindres en terme de survie. Pour stimuler la réponse immunitaire anti-tumorale et optimiser l'efficacité thérapeutique, nous avons évalué la combinaison d'une radiothérapie interne nanovectorisée et d'une vaccination par cellules F98 irradiées. Un recrutement des cellules immunitaires effectrices a été observé, cependant, l'efficacité thérapeutique n'a pas été augmentée. Les perspectives qu'offre ce travail sont de deux ordres : évaluer l'impact du processus angiogénique dans le cas du modèle CHC et stimuler le système immunitaire en association avec la radiothérapie interne pour le modèle de gliome
Immunological barriers to immunotherapy in primary and metastatic breast cancer
Patients with breast cancer obtain limited clinical benefits from immune checkpoint inhibitors (ICIs), pointing to the existence of multiple immunological alterations that cannot be simultaneously normalized with immunotherapy. Accumulating preclinical evidence suggests that radiation therapy (RT) can be harnessed to sensitize primary and metastatic mouse mammary carcinomas to ICIs. However, various clinical trials combining RT with ICIs in patients with breast cancer documented little cooperativity. Here, we discuss immunological barriers that may prevent RT from unlocking the therapeutic potential of ICIs in patients with breast cancer. These observations may inspire the development of combinatorial regimens that might benefit patients with diverse neoplastic conditions including brain tumors