335 research outputs found

    The (In)Efficiency of interaction

    Get PDF
    Evaluating higher-order functional programs through abstract machines inspired by the geometry of the interaction is known to induce space efficiencies, the price being time performances often poorer than those obtainable with traditional, environment-based, abstract machines. Although families of lambda-terms for which the former is exponentially less efficient than the latter do exist, it is currently unknown how general this phenomenon is, and how far the inefficiencies can go, in the worst case. We answer these questions formulating four different well-known abstract machines inside a common definitional framework, this way being able to give sharp results about the relative time efficiencies. We also prove that non-idempotent intersection type theories are able to precisely reflect the time performances of the interactive abstract machine, this way showing that its time-inefficiency ultimately descends from the presence of higher-order types

    Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.

    Get PDF
    International audienceFlavin reductase catalyzes the reduction of free flavins by NAD(P)H. As isolated, Escherichia coli flavin reductase does not contain any flavin prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin substrate in a ternary complex prior to oxidoreduction. The reduction of riboflavin by NADPH catalyzed by flavin reductase has been studied by static and rapid kinetics absorption spectroscopies. Static absorption spectroscopy experiments revealed that, in the presence of riboflavin and reduced pyridine nucleotide, flavin reductase stabilizes, although to a small extent, a charge-transfer complex of NADP+ and reduced riboflavin. In addition, reduction of riboflavin was found to be essentially irreversible. Rapid kinetics absorption spectroscopy studies demonstrated the occurrence of two intermediates with long-wavelength absorption during the catalytic cycle. Such intermediate species exhibit spectroscopic properties similar to those of charge-transfer complexes of oxidized flavin and NAD(P)H, and reduced flavin and NAD(P)+, respectively, which have been identified as intermediates during the reaction of flavoenzymes of the ferredoxin-NADP+ reductase family. Thus, a minimal kinetic scheme for the reaction of flavin reductase with NADPH and riboflavin can be proposed. After formation of the Michaelis complex of flavin reductase with NADPH and riboflavin, a first intermediate, identified as a charge-transfer complex of NADPH and riboflavin, is formed. It is followed by a second charge-transfer intermediate of enzyme-bound NADP+ and reduced riboflavin. The latter decays, yielding the Michaelis complex of flavin reductase with NADP+ and reduced riboflavin, which then dissociates to complete the reaction. These results support the initial hypothesis of a structural similarity between flavin reductase and the enzymes of the ferredoxin-NADP+ reductase family and extend it at a functional level

    ILC2s: New Actors in Tumor Immunity

    Get PDF
    Innate lymphoid cells (ILCs) represent the most recently identified family of innate lymphocytes that act as first responders, maintaining tissue homeostasis and protecting epithelial barriers. In the last few years, group 2 ILCs (ILC2s) have emerged as key regulators in several immunological processes such as asthma and allergy. Whilst ILC2s are currently being evaluated as novel targets for immunotherapy in these diseases, their involvement in tumor immunity has only recently begun to be deciphered. Here, we provide a comprehensive overview of the pleiotropic roles of ILC2s in different tumor settings. Furthermore, we discuss how different therapeutic approaches targeting ILC2s could improve the efficacy of current tumor immunotherapies

    Characterization of a fully active N-terminal 37-kDa polypeptide obtained by limited tryptic cleavage of pig kidney D-amino acid oxidase.

    Get PDF
    In order to obtain further information on the structure of D-amino acid oxidase (EC 1.4.3.3), limited proteolysis experiments have been carried out on its apo-, holo-, and holoenzyme-benzoate forms. The enzyme is unsensitive to 10% (w/w) chymotrypsin, while incubation with 10% (w/w) trypsin, under nondenaturating conditions, produces inactivation and proteolysis patterns which are different for the three forms of enzyme analyzed. These results confirm the previously reported conformational changes which occur upon binding of coenzyme to the apoprotein, and of benzoate to holoenzyme. The stable 37.0-kDa polypeptide, obtained from the apo- and holoenzyme-benzoate complex upon cleavage of a C-terminal 2.0-kDa fragment, retains full catalytic activity with unaltered kinetic parameters, and the coenzyme binding properties of the native enzyme. These results are in agreement with the tentative localization of the FAD-binding domain in the N-terminal region of the enzyme, and with the hypothesis that the function of the C-terminal region of D-amino acid oxidase could be related to the import of the enzyme into the peroxisomes, as suggested by Gould et al. (Gould, S. J., Keller, G. A., and Subramani, S. (1988) J. Cell. Biol. 107, 897-905)

    Nervous system dysfunction in Henoch-Schönlein syndrome: systematic review of the literature

    Get PDF
    Objective. CNS or peripheral nervous system dysfunction sometimes occurs in Henoch-Schönlein patients. Methods. We review all Henoch-Schönlein cases published after 1969 with CNS dysfunction without severe hypertension and neuroimaging studies (n = 35), cranial or peripheral neuropathy (n = 15), both CNS and peripheral nervous system dysfunction without severe hypertension (n = 2) or nervous system dysfunction with severe hypertension (n = 2). Forty-four of the 54 patients were <20 years of age. Results. In patients with CNS dysfunction without or with severe hypertension the following presentations were observed in decreasing order of frequency: altered level of consciousness, convulsions, focal neurological deficits, visual abnormalities and verbal disability. Imaging studies disclosed the following lesions: vascular lesions almost always involving two or more vessels, intracerebral haemorrhage, posterior subcortical oedema, diffuse brain oedema and thrombosis of the superior sagittal sinus. Following lesions were noted in the subjects with cranial or peripheral neuropathy without severe hypertension: peroneal neuropathy, peripheral facial palsy, Guillain-Barré syndrome, brachial plexopathy, posterior tibial nerve neuropathy, femoral neuropathy, ulnar neuropathy and mononeuritis multiplex. Persisting signs of either CNS (n = 9) or peripheral (n = 1) nervous system dysfunction were sometimes reported. Conclusions. In Henoch-Schönlein syndrome, signs of nervous system dysfunction are uncommon but clinically relevant. This review helps clinicians managing Henoch-Schönlein syndrome with nervous system dysfunctio

    Imine Deaminase Activity and Conformational Stability of UK114, the Mammalian Member of the Rid Protein Family Active in Amino Acid Metabolism

    Get PDF
    Abstract: Reactive intermediate deaminase (Rid) protein family is a recently discovered group of enzymes that is conserved in all domains of life and is proposed to play a role in the detoxification of reactive enamines/imines. UK114, the mammalian member of RidA subfamily, was identified in the early 90s as a component of perchloric acid-soluble extracts from goat liver and exhibited immunomodulatory properties. Multiple activities were attributed to this protein, but its function is still unclear. This work addressed the question of whether UK114 is a Rid enzyme. Biochemical analyses demonstrated that UK114 hydrolyzes -imino acids generated by L- or D-amino acid oxidases with a preference for those deriving from Ala > Leu = L-Met > L-Gln, whereas it was poorly active on L-Phe and L-His. Circular Dichroism (CD) analyses of UK114 conformational stability highlighted its remarkable resistance to thermal unfolding, even at high urea concentrations. The half-life of heat inactivation at 95 C, measured from CD and activity data, was about 3.5 h. The unusual conformational stability of UK114 could be relevant in the frame of a future evaluation of its immunogenic properties. In conclusion, mammalian UK114 proteins are RidA enzymes that may play an important role in metabolism homeostasis also in these organisms

    Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Get PDF
    Understanding how sediment moves along source to sink pathways through watersheds„from hillslopes to channels and in and out of floodplains„is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600æyear time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as ñbottlenecksî that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply. ©2017. American Geophysical Union. All Rights Reserved

    Autoimmune markers and vascular immune deposits in Finkelstein-Seidlmayer vasculitis: Systematic literature review.

    Get PDF
    Finkelstein-Seidlmayer vasculitis, also called acute hemorrhagic edema of young children or infantile immunoglobulin A vasculitis, is habitually a benign skin-limited small vessel leukocytoclastic vasculitis that mainly affects infants 24 months or less of age. Since this disease is commonly triggered by an infection, an immune-mediated origin has been postulated. To better appreciate the possible underlying immune mechanism of this vasculitis, we addressed circulating autoimmune markers and vascular immune deposits in patients contained in the Acute Hemorrhagic Edema BIbliographic Database, which incorporates all original reports on Finkelstein-Seidlmayer vasculitis. A test for at least one circulating autoimmune marker or a vascular immune deposit was performed in 243 cases. Subunits of complement system C4 resulted pathologically reduced in 4.7% and C3 in 1.4%, rheumatoid factor was detected in 6.1%, and antinuclear antibodies in 1.9% of cases. Antineutrophil cytoplasmic antibodies were never demonstrated. Immunofluorescence studies were performed on 125 skin biopsy specimens and resulted positive for complement subunits in 46%, fibrinogen in 45%, immunoglobulin A in 25%, immunoglobulin M in 24%, immunoglobulin G in 13%, and immunoglobulin E in 4.2% of cases. Infants testing positive for vascular immunoglobulin A deposits did not present a higher prevalence of systemic involvement or recurrences, nor a longer disease duration. In conclusion, we detected a very low prevalence of circulating autoimmune marker positivity in Finkelstein-Seidlmayer patients. Available immunofluorescence data support the notion that immune factors play a relevant role in this vasculitis. Furthermore, vascular immunoglobulin A deposits seem not to play a crucial role in this disease

    Computational strategies for a system-level understanding of metabolism

    Get PDF
    Cell metabolism is the biochemical machinery that provides energy and building blocks to sustain life. Understanding its fine regulation is of pivotal relevance in several fields, from metabolic engineering applications to the treatment of metabolic disorders and cancer. Sophisticated computational approaches are needed to unravel the complexity of metabolism. To this aim, a plethora of methods have been developed, yet it is generally hard to identify which computational strategy is most suited for the investigation of a specific aspect of metabolism. This review provides an up-to-date description of the computational methods available for the analysis of metabolic pathways, discussing their main advantages and drawbacks. In particular, attention is devoted to the identification of the appropriate scale and level of accuracy in the reconstruction of metabolic networks, and to the inference of model structure and parameters, especially when dealing with a shortage of experimental measurements. The choice of the proper computational methods to derive in silico data is then addressed, including topological analyses, constraint-based modeling and simulation of the system dynamics. A description of some computational approaches to gain new biological knowledge or to formulate hypotheses is finally provided
    corecore