465 research outputs found

    fluoroquinolone resistance and molecular characterization of gyra and parc quinolone resistance determining regions in escherichia coli isolated from poultry

    Get PDF
    Abstract Escherichia coli are a common inhabitant of the gastrointestinal tract of mammals and birds; nevertheless, they may be associated with a variety of severe and invasive infections. Whereas fluoroquinolones (FQ) have been banned in the United States for use in poultry production, the use of these antimicrobials in poultry husbandry is still possible in the European Union, although with some restrictions. The aim of this study was to investigate the FQ resistance of 235 E. coli isolates recovered from chickens and turkeys. Minimum inhibitory concentrations were determined by a microdilution method, whereas mutations in the quinolone resistance-determining regions of the target genes, gyrA and parC, were detected by a PCR-based method. High resistance rates (>60%) were observed for nalidixic acid, flumequine, and difloxacin, whereas resistance to ciprofloxacin, danofloxacin, enrofloxacin, marbofloxacin, and sarafloxacin was less frequently reported

    Incidence of pneumomediastinum in COVID-19: A single-center comparison between 1st and 2nd wave

    Get PDF
    In this study, we compared the incidence of pneumomediastinum in coronavirus disease (COVID-19) patients during the ascending phases of the 1st and 2nd epidemic waves. Crude incidence was higher during the 2nd wave at a quasi-significant level (0.68/1000 vs. 2.05/1000 patient-days, p = 0.05). When restricting the analysis to patients who developed pneumomediastinum during noninvasive ventilation, the difference became clearly significant (0.17/1000 vs 1.36/1000 patient-days, p = 0.039). At logistic regression, predisposing factors (p = 0.031), and COVID-19 radiological severity (p = 0.019) were independently associated with pneumomediastinum. Mortality in patients with pneumomediastinum was 87.5%. However, pneumomediastinum seemed to be related to a generally worse disease presentation in hospitalized patients during the 2nd wave, rather than to a separate pattern of disease. (C) 2021 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved

    Post-Acute COVID-19 Joint Pain and New Onset of Rheumatic Musculoskeletal Diseases: A Systematic Review

    Get PDF
    As the number of reports of post-acute COVID-19 musculoskeletal manifestations is rapidly rising, it is important to summarize the current available literature in order to shed light on this new and not fully understood phenomenon. Therefore, we conducted a systematic review to provide an updated picture of post-acute COVID-19 musculoskeletal manifestations of potential rheumatological interest, with a particular focus on joint pain, new onset of rheumatic musculoskeletal diseases and presence of autoantibodies related to inflammatory arthritis such as rheumatoid factor and anti-citrullinated protein antibodies. We included 54 original papers in our systematic review. The prevalence of arthralgia was found to range from 2% to 65% within a time frame varying from 4 weeks to 12 months after acute SARS-CoV-2 infection. Inflammatory arthritis was also reported with various clinical phenotypes such as symmetrical polyarthritis with RA-like pattern similar to other prototypical viral arthritis, polymyalgia-like symptoms, or acute monoarthritis and oligoarthritis of large joints resembling reactive arthritis. Moreover, high figures of post-COVID-19 patients fulfilling the classification criteria for fibromyalgia were found, ranging from 31% to 40%. Finally, the available literature about prevalence of rheumatoid factor and anti-citrullinated protein antibodies was largely inconsistent. In conclusion, manifestations of rheumatological interest such as joint pain, new-onset inflammatory arthritis and fibromyalgia are frequently reported after COVID-19, highlighting the potential role of SARS-CoV-2 as a trigger for the development of autoimmune conditions and rheumatic musculoskeletal diseases

    Estudo da variabilidade genética do gene da proteína de movimento de isolados de Apple chlorotic leaf spot virus (ACLSV) de ameixeiras e macieiras.

    Get PDF
    A infecção pelo Apple chlorotic leaf spot virus (ACLSV) ocorre, geralmente, e forma assintomática na maioria das cultivares comerciais de macieiras, pereiras, nectarineiras, cerejeiras e ameixeiras. Em outras cvs., isolados do vírus causam sintomas severos e o impacto econômico das doenças provocadas é substancial

    Animating the Carbon Cycle

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Ecosystems. Copyright © 2013 Springer Science+Business Media New York. The final publication is available at Springer via http://dx.doi.org/10.1007/s10021-013-9715-7Understanding the biogeochemical processes regulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully “animating” the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quantification of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mechanisms by which animals may affect carbon exchanges and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more traditional carbon storage and exchange rate estimates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create opportunity for management and policy to identify and implement new options for mitigating CO2 release at regional scales.US National Science FoundationNERCBBSRCNippon Foundatio

    Ultrasound-guided laser ablation after excisional vacuum-assisted breast biopsy for small malignant breast lesions: Preliminary results

    Get PDF
    Background: The purpose of this preliminary study is to evaluate the feasibility of the excisional ultrasound (US) guided vacuum-assisted breast biopsy (VAE), followed by US-guided Laser Interstitial Thermal Therapy (LITT) in the treatment of unifocal ductal breast carcinomas ≤ 1 cm and estimate the ablation rate analyzing the final histopathological results after subsequent surgical excision. Methods: In a single session 11 female patients with unifocal less than a centimeter breast cancer underwent 2 different minimally invasive percutaneous US-guided techniques: a VAE breast biopsy with an 8 G needle to remove the lesion and, immediately after, a LITT ablation in the biopsy site. Four weeks later, all patients underwent radiological follow-up. Afterward, a systematic surgery was performed, the ablation rate was calculated, and iconographic and histological features were correlated. Results: Average maximum diameter of the lesions was 7.6 mm (5-10 mm). No patient reported pain or discomfort during procedure. 1/11 patient (9.1%) reported an early minor complication (a small superficial skin burn). After surgical excision, the histopathological evaluation reported in 10/11 cases (90.9%) complete ablation of the target lesion. In only one case (9.1%) residual cancer was detected. The necrotic-hemorrhagic cavities showed a mean maximum diameter of 27.3 mm (20-35 mm). Conclusions: Laser ablation performed after excisional biopsy could be considered a valid alternative to surgical excision for the treatment of lesions ≤ 1 cm, if carried out by expert radiologists. The association of these minimally invasive percutaneous methods has proven to be reliable, fast, and safe with an ablation rate of 90.9% and excellent aesthetic results. RM and CESM are potentially able to quantifying treatment results and to follow-up the ablation effects

    Oropharyngeal Microbiome Profiled at Admission is Predictive of the Need for Respiratory Support Among COVID-19 Patients [preprint]

    Get PDF
    The clinical course of infection due to respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19) is thought to be influenced by the community of organisms that colonizes the upper respiratory tract, the oropharyngeal microbiome. In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19. Of 115 enrolled patients, 74 were confirmed COVID-19+ and 50 had symptom duration of 14 days or less; 38 acute COVID-19+ patients (76%) went on to require respiratory support. Although no microbiome features were found to be significantly different between COVID-19+ and COVID-19-patients, when we conducted random forest classification modeling (RFC) to predict the need of respiratory support for the COVID-19+ patients our analysis identified a subset of organisms and metabolic pathways whose relative abundance, when combined with clinical factors (such as age and Body Mass Index), was highly predictive of the need for respiratory support (F1 score 0.857). Microbiome Multivariable Association with Linear Models (MaAsLin2) analysis was then applied to the features identified as predicative of the need for respiratory support by the RFC. This analysis revealed reduced abundance of Prevotella salivae and metabolic pathways associated with lipopolysaccharide and mycolic acid biosynthesis to be the strongest predictors of patients requiring respiratory support. These findings suggest that composition of the oropharyngeal microbiome in COVID-19 may play a role in determining who will suffer from severe disease manifestations. Importance: The microbial community that colonizes the upper airway, the oropharyngeal microbiome, has the potential to affect how patients respond to respiratory viruses such as SARS-CoV2, the causative agent of COVID-19. In this study, we investigated the oropharyngeal microbiome of COVID-19 patients using high throughput DNA sequencing performed on oral swabs. We combined patient characteristics available at intake such as medical comorbidities and age, with measured abundance of bacterial species and metabolic pathways and then trained a machine learning model to determine what features are predicative of patients needing respiratory support in the form of supplemental oxygen or mechanical ventilation. We found that decreased abundance of some bacterial species and increased abundance of pathways associated bacterial products biosynthesis was highly predictive of needing respiratory support. This suggests that the oropharyngeal microbiome affects disease course in COVID-19 and could be targeted for diagnostic purposes to determine who may need oxygen, or therapeutic purposes such as probiotics to prevent severe COVID-19 disease manifestations

    Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota

    Get PDF
    The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the present surge in microbiome data.Comment: 20 pages, 5 figures accepted for publication in Plos Comp Bio. Supplementary video and information availabl
    • …
    corecore