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 23 
Abstract 24 

 The clinical course of infection due to respiratory viruses such as Severe Acute Respiratory Syndrome 25 

Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19) is thought to be 26 

influenced by the community of organisms that colonizes the upper respiratory tract, the oropharyngeal 27 

microbiome. In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients 28 

presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19.  29 

Of 115 enrolled patients, 74 were confirmed COVID-19+ and 50 had symptom duration of 14 days or less; 38 30 

acute COVID-19+ patients (76%) went on to require respiratory support. Although no microbiome features 31 

were found to be significantly different between COVID-19+ and COVID-19- patients, when we conducted 32 

random forest classification modeling (RFC) to predict the need of respiratory support for the COVID-19+ 33 

patients our analysis identified a subset of organisms and metabolic pathways whose relative abundance, when 34 

combined with clinical factors (such as age and Body Mass Index), was highly predictive of the need for 35 

respiratory support (F1 score 0.857).  Microbiome Multivariable Association with Linear Models (MaAsLin2) 36 

analysis was then applied to the features identified as predicative of the need for respiratory support by the 37 

RFC. This analysis revealed reduced abundance of Prevotella salivae and metabolic pathways associated with 38 

lipopolysaccharide and mycolic acid biosynthesis to be the strongest predictors of patients requiring respiratory 39 

support. These findings suggest that composition of the oropharyngeal microbiome in COVID-19 may play a 40 

role in determining who will suffer from severe disease manifestations. 41 

  42 
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 43 

Importance 44 

 The microbial community that colonizes the upper airway, the oropharyngeal microbiome, has the 45 

potential to affect how patients respond to respiratory viruses such as SARS-CoV2, the causative agent of 46 

COVID-19. In this study, we investigated the oropharyngeal microbiome of COVID-19 patients using high 47 

throughput DNA sequencing performed on oral swabs. We combined patient characteristics available at intake 48 

such as medical comorbidities and age, with measured abundance of bacterial species and metabolic pathways 49 

and then trained a machine learning model to determine what features are predicative of patients needing 50 

respiratory support in the form of supplemental oxygen or mechanical ventilation. We found that decreased 51 

abundance of some bacterial species and increased abundance of pathways associated bacterial products 52 

biosynthesis was highly predictive of needing respiratory support. This suggests that the oropharyngeal 53 

microbiome affects disease course in COVID-19 and could be targeted for diagnostic purposes to determine 54 

who may need oxygen, or therapeutic purposes such as probiotics to prevent severe COVID-19 disease 55 

manifestations. 56 

 57 

Introduction 58 

 Coronavirus Associated Infectious Disease 2019 (COVID-19) is caused by infection with the severe acute 59 

respiratory syndrome coronavirus 2 (SARS-CoV2). COVID-19 has sickened nearly 50 million and caused in 60 

excess of 770,000 deaths in the United States alone1. Some individuals develop severe disease and death while 61 

others present with only mild or no symptoms2. There are known clinical factors that are associated with risk of 62 

severe disease such as age, diabetes, high blood pressure, and obesity3, but predicting whether an individual 63 

patient will require hospitalization or respiratory support, or can recover safely at home has important 64 

implications for healthcare resource utilization. Currently, clinical factors such as age, BMI, and medical 65 

comorbidities, in combination with initial vital sign measurements, need for oxygen support, and clinical 66 

laboratory testing, are used to predict clinical decompensation and the need for ICU level of care--even the best 67 

algorithms, however perform only with an accuracy of 70-80%4,5. There are likely other individual factors that 68 
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determine how a patient responds to COVID-19 and may play a role in determining disease manifestations, 69 

such as the need for respiratory support6. 70 

 The oropharyngeal and nasopharyngeal microbiomes, the collection of organisms that colonize the 71 

human upper airway, have been hypothesized to influence the host immune responses to respiratory viral and 72 

bacterial infections7. Commensal bacterial species of the nasopharynx can modulate the immune response to 73 

influenza virus infection in a potentially protective way8,9. Conversely, viral co-infection in the upper airway 74 

and lungs may promote bacterial pathogens by liberating nutrients or exposing adhesion molecules10,11 leading 75 

to more severe disease and secondary bacterial infection. Here we hypothesize that information from the 76 

oropharyngeal microbiome along with clinical variables routinely collected at admission are predictive of the 77 

clinical trajectory of COVID-19 cases and specifically of the need of receiving respiratory support. To test this 78 

hypothesis we investigated the oropharyngeal microbiome of individuals presenting with symptoms suggestive 79 

of COVID-19 and positive clinical testing for COVID-19. We used machine learning-based modeling to 80 

determine oropharyngeal microbiome signatures among COVID-19 patients examine associations between 81 

microbiome features patients going on to require respiratory support, and to quantify the ability of microbiome 82 

features to predict the need for respiratory support. We then inspect the determined microbiome-clinical 83 

outcome associations to possibly explain why some patients need respiratory support during a SARS-CoV2 84 

infection.   85 

 86 

Results 87 

Patient Characteristics 88 

Clinical data, demographic and comorbidity data are presented in Table 1. Our filtering and subject 89 

categorization scheme is shown in Figure 1. Our final analysis cohort consisted of 74 COVID-19+ patients. Of 90 

COVID-19+ cohort, 50 had known symptom duration of less than 14 days, of these 38 (76%) required some 91 

form of respiratory support.  With the exception of Body Mass Index (BMI) (a.o.v p < 0.05) COVID-19+ 92 

patients requiring respiratory support, and those that did had similar characteristics. The overall mean age of the 93 

final cohort was 68 (SD 15.24), 50% were female, the majority of patients identified as Hispanic or Latino 94 
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(76%) and white (64%). Within the acute COVID+ cohort (see Figure 1), 12 (24%) patients never required any 95 

respiratory support, 18 (36%) were treated with supplemental oxygen via nasal cannula, 3(6%) were treated 96 

with supplemental oxygen via facemask, 6 patients were treated positive pressure ventilation (12%), and 11 97 

(22%) were intubated. There were 2 patients who died of COVID-19 but had Do Not Intubate (DNI) orders; 98 

accordingly, they were considered as having respiratory failure severe enough to be treated with intubation.  99 

   100 

Features of the oropharyngeal microbiome are associated with need for respiratory support  101 

 We first directly compared abundances of microbiome features between COVID-19+ and COVID-19- 102 

patients utilizing the Wilcoxon Rank Sum test. When corrected for multiple comparisons, there were no 103 

bacterial species or metabolic pathway abundances that were significantly different between COVID-19+ and 104 

COVID-19- patients. We then trained RFC models to determine what clinical and microbiome features (species 105 

and metabolic pathway abundances) were predictive of need for respiratory support. We selected this model 106 

because previous work has demonstrated robust correlations between microbiome and clinical outcomes12. We 107 

chose this machine learning-based approach as it enables the use of non-normally distributed (species relative 108 

abundance) and a diverse set of variables (Shannon’s alpha diversity index, and numerical and categorical 109 

clinical covariates) as features in the same model thus allowing us to predict clinical response from complex 110 

multi-modal data13. To evaluate the performance of our models, we computed F1 score, the harmonic mean 111 

between precision and recall, which accounts for both prediction errors and the specific type of prediction error. 112 

Utilizing sample-level Shannon’s alpha diversity index and clinical covariates, which included age, BMI, race, 113 

ethnicity, selected medical comorbidities available at admission, the model performed well with a mean F1 114 

score 0.857 ± 0.000 (Figure 2A). A model trained only on measured bacterial abundances performed 115 

comparably with a mean F1 score of 0.837 ± 0.005.  A model including clinical covariates, select medical 116 

comorbidities, measured bacterial abundances, and sample-level Shannon’s alpha diversity index led to a 117 

similar predictive performance measured by a mean F1 score of 0.858 ± 0.009. These F1 scores indicate similar 118 

performance of clinical and microbial variables. Additional model statistics are included in Table S1. We 119 
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examined the model that combined microbiome features and clinical covariates in more depth to compare 120 

directly how these factors were associated with the need for respiratory support. 121 

The aggregated permutated variable importance14 from the selected RFC model identified the relative 122 

abundance of Prevotela salivae as the most important predictor of the need for respiratory support (Figure 2B). 123 

Specifically, a decrease in P. salivae abundance was indicative of respiratory support need (Figure 2C). 124 

Notably, this organism is ranked higher than both patient age and BMI (Figure 2B), which are two clinical 125 

factors known to associate with severe COVID-193. Other factors that were predictive of the need for 126 

respiratory support include decreases in Shannon’s alpha diversity and the decreases in the relative abundances 127 

of Campylobacter concisus, Veillonella infantum, and Actinomycetes species S6-Spd3 (Figure 2C).  128 

To further explore connections between microbiome features and clinical covariates, we examined the 129 

association between the abundance of our 15 top-predicting microbes with clinical covariates using MaAsLin2. 130 

MaAsLin2 determines multivariable associations between clinical variables and microbiome data utilizing 131 

general linear models as opposed to a random forest15. This approach allows us to determine if specific 132 

microbiome predictors are associated with our clinical outcome of interest (need or O2 support) after explicitly 133 

controlling for the effect of possible confounding clinical covariates (i.e., age and BMI).  Furthermore, 134 

MaAsLin2 analysis can also be considered an independent validation of our findings using a different 135 

methodology. The need for respiratory support was identified as significantly associated with four of the fifteen 136 

RFC-identified as important microbes, specifically, P. salivae, Eubacterium branchy, Actinomyces sp. S6 spd3 137 

and, Aggregatibacter sp. oral taxon 45 (Table 2). Age was found to be independently associated with 138 

abundance  of P. salivae, and Neisseria sp. oral taxon 014. None of the top microbial predictors were found to 139 

associate with BMI. These results support the association between microbiome features and the need for 140 

respiratory support as these features were found to be significantly associated with this outcome utilizing an 141 

approach that specifically controls for potential confounders such as patients’ age and BMI.  142 

Similar analysis was repeated on the samples profiled for the abundance of metabolic pathways using 143 

HUMAnN316.  The relative abundance of specific bacterial metabolic pathways was also highly predicative of 144 

the need for respiratory support (mean F1 score 0.804 ± 0.009) and adding clinical covariates available at 145 
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admission to the model, resulted in a similar mean F1 score of 0.821 ± 0.004 (Figure 3A). Additional model 146 

statistics are included in Table S2. The metabolic pathways most important in predicting the need for 147 

respiratory are decreased abundance of LPS biosynthesis (CMP-3-D-manno-octulosonate and lipid IV A 148 

biosynthesis), mycolate biosynthesis, and trehalose degradation pathways and increased abundance of L-149 

threonine, L-proline and inosine-5-phosphate pathways (Figure 3B,C). We examined the contribution of 150 

bacterial genera to two LPS biosynthetic pathways that were highly predicative of the need for respiratory 151 

support. We observed, less of the CMP-3-deoxy-D-manno-octulosonate pathway originating from Prevotella 152 

and large portion of this pathway is originating from Pseudomonas in patients who required respiratory support 153 

(Supplementary figure 1). A large contributor to the Lipid IVA biosynthesis pathway in patients who required 154 

respiratory support originated from  Aggrigatibacter, a genus closely related to Haemophilus influenzae17. We 155 

similarly applied MaAsLin2 to the metabolic pathway predictors identified as important in our RFC. Seven of 156 

the top predictors identified also showed significant associations by MaAsLin2 with only one pathway (stearate 157 

biosynthesis) significantly associated with age as well. Notably, the relative abundance mycolic acid 158 

biosynthesis pathway was found to be a top predictor of the need for respiratory support and significantly 159 

associated with the need for respiratory support by MaAsLin2. 160 

 161 

Discussion 162 

 We show that the abundance of several Gram-negative and Actinomyces species and metabolic pathways 163 

associated with LPS, mycolic acid, and amino acid biosynthesis within the oropharyngeal microbiome are 164 

associated with COVID-19 patients developing the need for respiratory support and thus COVID-19 severity. 165 

The top predictors from our RFC predictive model were confirmed using an independent analysis based on 166 

generalized linear models. When examining important factors associated of the need for respiratory support, we 167 

found that decreased abundances of P. salivae, and an Actinomyces species were highly associated with the 168 

need for respiratory support in both analyses, suggesting the presence of these protective organisms is 169 

associated with COVID-19 patients not requiring respiratory support. A higher abundance of genes encoding 170 

the metabolic pathways for mycolate biosynthesis, L-alanine biosynthesis, stearate biosynthesis, folate 171 
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transformation, and genes associated with aerobic utilization of hexuronides were identified in both analyses as 172 

associated with the need for respiratory support, with LPS biosynthesis genes (CMP-3-D-manno-octulosonate 173 

and lipid IV A biosynthesis) also found to be highly predictive in the RFC. These trends suggest that the most 174 

important microbiome factors in predicting the need for respiratory support are a higher abundance of some 175 

commonly detected oropharyngeal commensal bacteria and an increased abundance of pathways associated 176 

with bacterial product biosynthesis and aerobic respiration.   177 

 178 

Prevotella and LPS biosynthesis 179 

 Decreased P. salivae abundance was the strongest predictor of the need for respiratory in our RFC 180 

model and significantly associated with the outcome by MaAsLin2. Prior work has shown members of the 181 

Prevotella genus to be associated with COVID-19, with increased abundances of this genus as measured by 16S 182 

rRNA sequencing being associated with more severe disease18. This study included a similar number of 183 

COVID-19+ patients with similar disease severity but did not consider clinical variables when determining 184 

associations between organism abundance and disease severity, which we have included in our models. In 185 

addition, this was a study of nasopharyngeal swabs, as opposed to oral swabs, which is a distinctly different 186 

microbial community7 and may interact with SARS-CoV2 differently. Prevotella are Gram-negative anaerobic 187 

organisms and common oropharyngeal colonizers that have been implicated in periodontal disease19. Sequences 188 

encoding Prevotella house-keeping proteins such as the chaperonin GroEL and RNA polymerase were detected 189 

in metagenomic studies of the lungs of COVID-19 patients early in the outbreak20 and were hypothesized to 190 

play a role in the pathogenesis of COVID-19 lung disease21.  191 

 Prevotella has generally been implicated in chronic inflammation22 but is also part of the normal, 192 

healthy lung microbiome23. P. salivae has been shown in animal models to stimulate less inflammatory cytokine 193 

production and lead to less neutrophil chemotaxis than the Gram-negative respiratory pathogens Morexella 194 

catarhallis and Haemophilus influenzae24. It is hypothesized that a penta-acylated LPS produced by Provetella25 195 

stimulates less innate-immune receptor activation than hexa-acylated LPS produced by Gram-negative 196 
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respiratory pathogens and Escherichia coli22. This may represent an adaptation that allows Prevotella to 197 

colonize the upper airway without causing disease.  198 

Our metagenomic analysis found that the abundance of two LPS biosynthetic pathways, CMP-3-deoxy-199 

D-manno-octulosonate and lipid IV A biosynthesis, are the top predictors of the need for respiratory support in 200 

the RFC. CMP-3-deoxy-D-manno-octulosonate is a critical metabolite in LPS biosynthesis26, and lipid IVA is a 201 

precursor in the production of the lipid A core of LPS27. In our RFC model trained with metabolic pathways and 202 

clinical covariates, a higher abundance of these pathways appears protective, which initially seems counter-203 

intuitive as LPS is known to generate substantial inflammation via the innate immune system activation28.  204 

When we examined the contribution of bacterial genera to the CMP-3-deoxy-D-manno-octulosonate 205 

biosynthesis pathway, we observed that less of the pathway originated from Prevotella in patients who required 206 

respiratory support and a larger portion of this pathway originates from Pseudomonas, a known respiratory 207 

pathogen capable of producing highly inflammatory LPS29. A large contributor to the Lipid IVA biosynthesis 208 

pathway originated from Aggrigatibacter, a genus closely related to Haemophilus influenzae17, which also 209 

produces highly inflammatory LPS24. A possible explanation for these findings may be related to the natural 210 

history of COVID-19 lung disease. Sequencing-based analysis of broncho-alveolar lavage fluid from patients 211 

hospitalized with COVID-19 lung disease has shown the presence of oropharyngeal flora, which are 212 

hypothesized to enter the lungs by aspiration30. The presence of organisms producing more inflammatory LPS 213 

in the oropharynx translocating to the lungs may potentiate inflammation during COVID-19 lung disease and 214 

lead to the need for respiratory support. Our findings support the hypothesis that a higher abundance of 215 

Prevotella and other species producing weakly immunogenic LPS corresponds to decreased abundance of more 216 

inflammatory LPS producing species. If aspiration and translocation occurs during COVID-19, the presence of 217 

organisms that produce less inflammatory LPS may limit inflammation in the lungs of COVID-19 patients.   218 

 219 

Actinomyces and Mycolic Acid Biosynthetic Pathway  220 

 A lower abundance of several Actinomyces were found to be predictive of the need for respiratory 221 

support in our RFC and an Actinomyces species was found as associated with the outcome via MaAsLiN2. 222 
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Actinomyces are slow-growing, facultatively anaerobic, Gram-positive organisms and ubiquitous colonizers of 223 

the human body and environment31,32. Clinically, they are usually associated with slow progressing infections of 224 

the head, neck, chest and pelvis32. They are likely a component of a healthy oropharyngeal microbiome, in a 225 

study of the oropharyngeal microbiome among healthy adults, higher Actinomyces abundance was associated 226 

with decreased systemic inflammation33. They also are capable of biosynthesis of a wide variety of biologically 227 

active compounds including mycolic acid34. A lower abundance of the pathway for mycolic acid biosynthesis 228 

was a top predictor of the need for respiratory support in our RFC model and was also associated with the 229 

outcome by MaAsLiN2. Actinomyces is the only genera found to effect COVID-19 in this study hypothesized to 230 

be capable of mycolic acid production. An anti-inflammatory effect, possibly via mycolic acid biosynthesis, 231 

may be why a higher abundance of these organisms and this metabolic pathway is predictive of not requiring 232 

respiratory support. 233 

 234 

 235 

The Potential Protective Effect of Commensals 236 

 The predominant effect that we observed was that a decrease in the abundance of several commensal 237 

organisms and an increased abundance of bacterial products synthesis pathways of the oropharyngeal 238 

microbiome is the primary predictor of the need for respiratory support in COVID-19. The finding that the 239 

bacteria of the oropharyngeal microbiome are potentially protective against severe COVID-19 fits with 240 

observational data about the treatment of COVID-19 patients with antibiotics.  These studies suggest that 241 

treatment of COVID-19 with antibiotics does not reduce mortality and that secondary bacterial infection is 242 

uncommon35,36. Our findings run counter to the hypothesis that the oropharynx is primarily a source of 243 

opportunistic pathogens that gain access to the lungs during the course of COVID-1930.  244 

If the predominant effect were that the presence of harmful or pathogenic bacteria in the oropharyngeal 245 

microbiome contributing to severe COVID-19, one might expect treatment with antibiotics to be beneficial. Our 246 

findings are more consistent with the results of animal-model experiments with influenza, that suggest that 247 

treatment with antibiotics is potentially harmful due to their effect on beneficial commensal organisms. In mice 248 
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challenged with influenza who had normal upper airway microbiomes, macrophages activated genes associated 249 

with anti-viral activity such as interferon-gamma, while those who were treated with antibiotics failed to 250 

activate these pathways and had more severe lung disease9. In another study, antibiotic treatment prior to 251 

influenza challenge impaired dendritic cell priming and migration to draining lymph nodes that ultimately led to 252 

impaired development of T-cell mediated adaptive immunity37. In COVID-19, the oropharyngeal microbiome 253 

may play a similar role, aiding the development of an effective anti-viral response that limits severe disease 254 

manifestations. In this context, the microbiome was demonstrated to be critical to an effective immune response 255 

to viral infection8,9.  256 

   257 

 258 

Strengths and Limitations 259 

 Our strengths include our enrollment of patients within the Emergency Department during acute 260 

presentation of the disease, prospective data collection, use of metagenomic sequencing, and use of two 261 

independent analysis techniques to verify our results. The enrollment and collection of samples within the 262 

Emergency Department has allowed us to sample the microbiome of patients early in disease course before 263 

medical intervention. We excluded any patients with self-reported symptoms longer than 14 days at time of 264 

collection to focus our analysis on the acute phase of the COVID-19.  Our characterization of the oropharyngeal 265 

microbiome shows us features that can be predictive of disease course and potentially a target for therapeutics. 266 

In addition, the use of metagenomic sequencing for microbiome characterization has enabled us to determine 267 

what bacterial metabolic pathways could potentially affect disease course as opposed to just genus-level 268 

information provided by 16S rRNA sequencing. Although some microbiome features were also associated with 269 

age by MaAsLin2, these represent independent associations and would have been corrected for when 270 

determining associations with the need for respiratory support. 271 

 Weaknesses of this study include a single time-point in microbiome sampling from a single center and 272 

enrollment of a limiting number of patients presenting with acute COVID-19 early in the disease course. Single 273 

time-point sampling does not allow observation of how an individual oropharyngeal microbiome may change 274 
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over the course of the disease. Although we enrolled 115 patients in the study, after focusing on the acute phase 275 

of COVID-19, only 50 COVID-19+ individuals with complete data were available for full analysis, which 276 

reduces statistical certainty. The reasons for incomplete data are multifactorial and include difficulties 277 

conducting clinical research during the COVID-19 pandemic. We developed a method to limit research staff 278 

contact with patients to prevent the spread of COVID-19 by having nursing staff collect specimens during 279 

routine clinical care after verbal consent. Although we successfully protected our staff, this necessitated the 280 

need for follow up to collect information on symptoms and symptom duration, which is challenging among an 281 

Emergency Department population, and led to missing clinical data and later withdrawal of consent.  282 

 283 

Conclusions 284 

 We demonstrate a relationship between disease manifestations of COVID-19 and the oropharyngeal 285 

microbiome. Specifically, the decreased abundance of some organisms, primarily P. salivae, is predictive of 286 

patients requiring respiratory support. We show that the presence of metabolic pathways for bacterial products 287 

such as LPS and mycolic acid are also predictive of not requiring respiratory support, implying that the presence 288 

of bacteria producing these products has a positive impact on disease course. Together, these findings suggest 289 

that the presence of beneficial commensal bacteria in the upper airway has the potential to prevent or mitigate 290 

pulmonary manifestations of COVID-19. Thus, our study underscores that the interaction between the 291 

oropharyngeal microbiome and respiratory viruses such as SARS-CoV2 could potentially be harnessed for 292 

diagnostic and therapeutic purposes. 293 

 294 

Methods 295 

 Enrollment: Patients presenting with COVID-19 symptoms at the UMass Memorial Medical Center 296 

Emergency Department or while admitted to UMass Memorial COVID-19 treatment units were approached for 297 

enrollment in the study. Some individuals had known COVID-19 status when approached on inpatient COVID-298 

19 wards, but the majority were approached in the Emergency Department prior to receiving results of clinical 299 

testing. Enrollment and sample collection took place April 2020 through March 2021, this occurred before 300 
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vaccines were widely available and no subjects had been vaccinated against COVID-19. Enrolled patients were 301 

followed prospectively through the Electronic Medical Record (EMR).  We collected information on disease 302 

outcomes of COVID-19 for their initial visit including need for respiratory support, the results of clinical 303 

laboratory testing, and mortality via the EMR. The Institutional Review Board at the University of 304 

Massachusetts Medical School approved this study (protocol # H00020145). 305 

Sample Collection and Processing: Oropharyngeal samples were collected using OMNIgene•ORAL 306 

collection kits (OMR-120, DNA Genotek). Briefly, the posterior oropharynx was swabbed for 30 seconds and 307 

collected as per manufacturer protocol. Samples were heated at 65-70°C for one hour38 to ensure SARS-CoV-2 308 

inactivation and then stored frozen at -20°C. Upon thawing for nucleic acid extraction, samples were treated with 309 

5ul Proteinase K (P8107S, New England Biolabs) for 2 hours at 50°C, then extracted using ZymoBIOMICS 310 

DNA/RNA Miniprep Kits (R2002, Zymo Research) as per manufacture protocol. DNA sequencing libraries were 311 

constructed using the Nextera XT DNA Library Prep Kit (FC-131-1096, Illumina) and sequenced on a NextSeq 312 

500 Sequencing System as 2 x 150 nucleotide paired-end reads. 313 

Classification of Samples: Samples were classified as being collected from a patient with acute 314 

COVID-19 (COVID+) if they had a documented clinical testing that was positive rtPCR testing for SARS-315 

CoV2 and self-reported symptoms for 14 days or less.  The need for respiratory support was classified as 316 

positive if the patient required any intervention to support breathing. This included supplemental oxygen via 317 

nasal cannula or face mask, non-invasive possible pressure ventilation, or intubation. If a patient had a Do Not 318 

Intubate (DNI) order but went on to die of COVID-19 symptoms, we considered that patient has having 319 

respiratory failure severe enough to require intubation and classified the sample as being from a patient who 320 

was intubated. Patients were considered as having in-hospital mortality from COVID-19 if this was listed as a 321 

cause of death on hospital death records.  322 

Sequence Processing and Analysis: Shotgun metagenomic reads were first trimmed and quality filtered 323 

to remove sequencing adapters and host contamination using Trimmomatic39 and Bowtie240, respectively, as 324 

part of the KneadData pipeline version 0.7.2 (https://huttenhower.sph.harvard.edu/kneaddata/). As in our 325 
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previous work41,42, reads were then profiled for microbial taxonomic abundances and metabolic pathways using 326 

Metaphlan3 and HUMAnN3, respectively43 (https://www.biorxiv.org/content/10.1101/2020.11.19.388223v1).  327 

Microbiome-clinical factors modeling: To determine the association between bacterial species 328 

abundance and COVID-19 diagnosis, we performed a non-parametric Wilcoxon Rank Sum test for species with 329 

at least 5% prevalence and a minimal average relative abundance of 0.01% across all samples (n=115; 74 330 

COVID-19+ and 41 COVID-19–) with the Bonferroni correction for multiple comparisons. To identify 331 

oropharyngeal bacteria and clinical covariates that are predictive of respiratory support in COVID-19+ patients 332 

and compare their relative contributions, we developed and ran a Random Forest Classification (RFC)-based 333 

pipeline in R. For each subset of data, the pipeline was run six times from six different random seeds and 334 

statistics for the model’s classification performance and variables contribution to class discrimination were 335 

calculated for each seed.  The first step of the pipeline is a leave-one-out cross-validation split of the data. The 336 

resulting train set is then used for the following steps of the pipeline. Feature  selection using  Boruta44 is then 337 

run in a leave-one-out cross-validation scheme to select a subset of variables that are discriminatory. The 338 

Boruta-selected variables were then used to train a RFC, using the ranger package14. The resulting RFC model 339 

was then used to predict the left-out sample. Thus, the performance of our model is calculated based on the 340 

aggregated predictions of left-out data.  The top 18 most important variables were then used to run MaAsLin215 341 

to examine their multivariate association. The FDR corrected p-value and coefficient are shown on the violin 342 

plots. Plots were generated in R using the ggplot2 package45 and color palettes from the calecopal package 343 

(https://github.com/an-bui/calecopal). 344 
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 460 
Figure Legends 461 
 462 

 463 

Figure 1. Study Enrollment Flow Chart 464 

 465 

Figure 2. Results of Random Forest Classification Model.  A) F1 scores of RFC models including clinical 466 

covariates (CC), individual bacterial abundances, and the combination of bacterial abundances, alpha diversity, 467 

and clinical covariates.  All models perform well with models including microbiome data performing slightly 468 

better.  B) Median ranked importance of model features including microbiome features and clinical data 469 

(median importance ± median absolute deviation). The size of the circle represents how often each feature was 470 

selected. The relative abundance of Prevotella salivae is the top predictor with the relative abundance of 471 

Campylobacter concisus, Veillonela infantium and Actinomycetes sp. S6-Spd3 and the Shannon diversity index 472 

also showing significant contributions.  C. The relative abundance of the organisms determined to be important 473 

in predicting need for respiratory support by our RFC model. Q-values (BH adjusted p-values) and coefficients 474 

calculated via MaAslin2 are shown for each bug. By MaAsLin2, Prevotella salivae, Eubacterium branchy, 475 

Actinomyces sp. S6 spd3 and, Aggregatibacter sp. oral taxon 45 were significantly associated (q < 0.25) with 476 

need for respiratory support and are bolded.   477 

 478 

Figure 3. Random Forest Classification Using Metabolic Pathways. A) F1 scores of RFC models built on 479 

relative abundance of detected metabolic pathways and clinical covariates (CC). B) Median relative importance 480 

of variables in predicating the need for respiratory support within the trained with relative pathway abundances 481 

and clinical covariates (median importance ± median absolute deviation). C) Relative abundance of detected 482 

metabolic pathways in individuals requiring respiratory support and those not requiring respiratory support. 483 

MaAsLin2 derived q-values and coefficients are displayed for each pathway. Significant q values (q < 0.25) are 484 

bolded.  485 

 486 
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Figure S1 Bacterial Genus Origin of Detected Metabolic Pathways Predicitive of Need For Respiratory 487 

Support. Panel A, Contribution of detected bacterial genera to pathway abundance of CMP-3-deoxy-D-manno-488 

octusonate in patiens who did and did not go on to require respiratory support. Panel B, Contribution of detected 489 

bacterial genera to pathway abundance of Lipid IV A biosynthesis in patients who did and did not go on to 490 

require respiratory support. Noteable is the presence of Pseudomonas contributing to the detected CMP-3-491 

deoxy-D-manno-octusonate pathway abundance and increased abundance of Aggrigatibacter contributing to the Lipid 492 

IV A pathway. 493 

 494 
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Table 1 Study Population Characteristic1 

 2 
 3 
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Table 2 Results of MaAsLin Analysis on Bacterial Abundances 1 
 2 
Clinical 
Covariate Organism Coefficient 

Standard 
Error p-value q-value 

Respiratory 
Support Prevotella salivae -0.044 0.013 0.0012 0.054 
Respiratory 
Support Eubacterium brachy -0.0011 0.0004 0.0092 0.21 
Age Prevotella salivae 0.00085 0.00034 0.015 0.22 
Respiratory 
Support Actinomyces sp S6 Spd3 -0.0021 0.00094 0.028 0.23 
Respiratory 
Support 

Aggregatibacter sp oral taxon 
458 -0.0012 0.00053 0.031 0.23 

Age Neisseria sp oral taxon 014 -2.28E-06 9.83E-07 0.025 0.23 
 3 
 4 
 5 
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 1 
Table 3 Results of MaAsLin Analysis on Metabolic Pathway Abundances  2 
 3 

Clinical Covariate Metabolic Pathway  Coefficient 
Standard 
Error p-value q-value 

Respiratory 
Support 

PWY0.1061: superpathway 
of L-alanine biosynthesis -0.003 0.00093 0.0027 0.064 

Respiratory 
Support 

PWY-5989:stearate 
biosynthesis II (bacteria 
and plants) -0.0032 0.00097 0.002 0.064 

Respiratory 
Support 

P23-PWY: reductive TCA 
cycle I -0.00038 0.00013 0.0049 0.079 

Respiratory 
Support 

PWYG-321: mycolate 
biosynthesis -0.0022 0.00086 0.016 0.13 

Respiratory 
Support 

GALACT GLUCUROCAT 
PWY: superpathway of 
hexuronide and hexuronate 
degradation -0.00018 7.02E-05 0.014 0.13 

Respiratory 
Support 

PWY-3781: aerobic 
respiration I (cytochrome c) -0.008 0.003 0.012 0.13 

Age 

PWY-5989.: stearate 
biosynthesis II (bacteria 
and plants) 5.66E-05 2.53E-05 0.03 0.19 

Respiratory 
Support 

PWY-3841: folate 
transformations II -0.0032 0.0015 0.032 0.19 

 4 
 5 
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