30 research outputs found

    Modulation of IL-17 and Foxp3 Expression in the Prevention of Autoimmune Arthritis in Mice

    Get PDF
    ©2010 Duarte et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Rheumatoid Arthritis (RA) is a chronic immune mediated disease associated with deregulation of many cell types. It has been reported that different T cell subsets have opposite effects in disease pathogenesis, in particular Th17 and Treg cells. Methodology and Findings: We investigated whether non-depleting anti-CD4 monoclonal antibodies, which have been reported as pro-tolerogenic, can lead to protection from chronic autoimmune arthritis in SKG mice – a recently described animal model of RA – by influencing the Th17/Treg balance. We found that non-depleting anti-CD4 prevented the onset of chronic autoimmune arthritis in SKG mice. Moreover, treated mice were protected from the induction of arthritis up to 60 days following anti-CD4 treatment, while remaining able to mount CD4-dependent immune responses to unrelated antigens. The antibody treatment also prevented disease progression in arthritic mice, although without leading to remission. Protection from arthritis was associated with an increased ratio of Foxp3, and decreased IL-17 producing T cells in the synovia. In vitro assays under Th17-polarizing conditions showed CD4-blockade prevents Th17 polarization, while favoring Foxp3 induction. Conclusions: Non-depleting anti-CD4 can therefore induce long-term protection from chronic autoimmune arthritis in SKG mice through reciprocal changes in the frequency of Treg and Th17 cells in peripheral tissues, thus shifting the balance towards immune tolerance.This work was funded by SUDOE, grant number IMMUNONET-SOE1/1P1/E014, and supported by a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (FCT/POCI/SAU-MMO/55974/2004). JD, AA-D, and VGO are funded with scholarships from FCT (SFRH/BD/23631/2005, SFRH/BD/49093/2008, and SFRH/BPD/22575/2005)

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (bodymass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Potencial envolvimento da adiponectina e seus receptores na modulação da esteroidogênese em corpo lúteo de cadelas ao longo do diestro

    No full text
    No ciclo estral de cadelas a fase luteínica, denominada diestro, compreende um período que varia de 60 a 100 dias em animais não-prenhes, caracterizado pela elevação plasmática de progesterona nos primeiros 20 dias pós ovulação (p.o). A adiponectina é a mais abundante proteína secretada pelo tecido adiposo, porém sua concentração plasmática diminui significativamente em alterações metabólicas como resistência insulínica e Diabetes mellitus tipo2, alterações descritas como relacionadas em algumas cadelas com o período de diestro. O objetivo do estudo foi determinar a expressão e imunolocalização do sistema adiponectina (adiponectina e seus receptores, adipoR1 e adipoR2) no corpo lúteo de cadelas ao longo do diestro, correlacionando-o ao perfil hormonal de 17β-estradiol e progesterona, assim como à expressão de um dos genes alvo do sistema, o PPAR-γ. Para realização do estudo foram coletados corpos lúteos de 28 cadelas durante ovariosalpingohisterectomia de eleição nos dias 10, 20, 30, 40, 50, 60 e 70 pós ovulação (o dia zero da ovulação foi considerado aquele no qual a concentração plasmática de progesterona atingiu 5ng/mL). Os corpos lúteos foram avaliados por imunohistoquímica para adiponectina e seus receptores e a expressão do RNAm do PPAR-γ por PCR em tempo real. A análise estatística da avaliação gênica foi realizada com o teste ANOVA, seguido por comparação múltipla Newman-Keuls. O sinal da adiponectina apresentou-se mais intenso até os primeiros 20 dias p.o, momento de regência da progesterona; houve queda gradativa após este período, coincidindo com a ascensão do 17β-estradiol, cujo pico foi notado próximo do dia 40 p.o. A queda marcante da adiponectina ocorreu após 50 dias p.o. O sinal do adipoR1 mostrou-se bem evidente até os 40 dias p.o e o do adipoR2 até os 50 dias p. o, decaindo posteriormente. Foi observada maior expressão do gene PPAR-γ aos 10, 30 e 70 dias p.o. Estes resultados mostram que a expressão protéica da adiponectina e de seus receptores se altera ao longo do diestro e que estas alterações podem estar relacionados às alterações hormonais e expressão do PPAR- γ, participando do mecanismo fisiológico de desenvolvimento, manutenção, atividade e regressão luteínica em cadelas

    The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4<sup>+</sup> T-cells

    Get PDF
    BACKGROUND: Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4(+) T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4(+) T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4(+) T-cells co-cultured with CD11c(+) myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4(+) T-cells, and examined potential cell interactions that may be involved using RNA-seq. RESULTS: mDC (CD1c(+)), SLAN(+) DC and CD14(+) monocytes were most efficient in stimulating proliferation of CD4(+) T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4(+) T-cells following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4(+) T-cells. Gene expression analysis, comparing the CD1c(+) mDC, SLAN(+) DC and CD14(+) monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4(+) T-cells via cell-cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene). CONCLUSIONS: APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14(+) monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4(+) T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 latency
    corecore