81 research outputs found

    Retorik

    Get PDF
    Retorik av Rudolf Rydstedt Àr licensierad under Creative Commons ErkÀnnande-IngaBearbetningar 3.0 Unported License. Du fÄr vidaredistribuera verket, kommersiellt och ickekommersiellt, sÄ lÀnge det sprids oförÀndrat och i sin helhet, och Rudolf Rydstedt erkÀnns som upphovsman. JÀmför http://creativecommons.org/licenses/

    Tackling an intractable problem: can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)?

    Get PDF
    The relationships among and within the families that comprise the orthopteran superfamily Stenopelmatoidea (suborder Ensifera) remain poorly understood. We developed a phylogenetic hypothesis based on Bayesian analysis of two nuclear ribosomal and one mitochondrial gene for 118 individuals (84 de novo and 34 from GenBank). These included Gryllacrididae from North, Central, and South America, South Africa and Madagascar, Australia and Papua New Guinea; Stenopelmatidae from North and Central America and South Africa; Anostostomatidae from North and Central America, Papua New Guinea, New Zealand, Australia, and South Africa; members of the Australian endemic Cooloola (three species); and a representative of Lezina from the Middle East. We also included representatives of all other major ensiferan families: Prophalangopsidae, Rhaphidophoridae, Schizodactylidae, Tettigoniidae, Gryllidae, Gryllotalpidae and Myrmecophilidae and representatives of the suborder Caelifera as outgroups. Bayesian analyses of concatenated sequence data supported a clade of Stenopelmatoidea inclusive of all analyzed members of Gryllacrididae, Stenopelmatidae, Anostostomatidae, Lezina and Cooloola. We found Gryllacrididae worldwide to be monophyletic, while we did not recover a monophyletic Stenopelmatidae nor Anostostomatidae. Australian Cooloola clustered in a clade composed of Australian, New Zealand, and some (but not all) North American Anostostomatidae. Lezina was included in a clade of New World Anostostomatidae. Finally, we compiled and compared karyotypes and sound production characteristics for each supported group. Chromosome number, centromere position, drumming, and stridulation differed among some groups, but also show variation within groups. This preliminary trait information may contribute toward future studies of trait evolution. Despite greater taxon sampling within Stenopelmatoidea than previous efforts, some relationships among the families examined continue to remain elusive

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation

    Generic relationships of New World Jerusalem crickets (Orthoptera: Stenopelmatoidea:Stenopelmatinae), including all known species of Stenopelmatus

    No full text
    The New World Jerusalem crickets currently consist of 4 genera: Stenopelmatus Burmeister, 1838, with 33 named entities; Ammopelmatus Tinkham, 1965, with 2 described species; Viscainopelmatus Tinkham, 1970, with 1 described species, and Stenopelmatopterus Gorochov, 1988, with 3 described species. We redefine the generic boundaries of these 4 genera, synonymize Stenopelmatopterus under Stenopelmatus, and synonymize Viscainopelmatus under Ammopelmatus. We then discuss, and illustrate, all the types of the species of Stenopelmatus, all of which only occur south of the United States’ border. We recognize as valid the following 5 described Mexican and Central American species: S. ater, S. piceiventris, S. sartorianus, S. talpa, and S. typhlops. We declare the following 13 described Mexican and Central American Stenopelmatus taxa as nomen dubium: S. calcaratus, S. erythromelus, S. guatemalae, S. histrio, S. lessonae, S. lycosoides, S. mexicanus, S. minor, S. nieti, S. sallei, S. sumichrasti, S. toltecus, and S. vicinus. We designate a neotype for S. talpa and lectotypes for S. ater, S. guatemalae, S. histrio, S. lessonae, S. mexicanus, S. minor, S. nieti, S. sallei, S. sumichrasti, and S. toltecus. We assign a type locality for S. piceiventris. We concur with the previous synonymy of S. politus under S. sartorianus. We describe 14 new species of Stenopelmatus from Mexico, Honduras and Ecuador, based on a combination of adult morphology, DNA, calling song drumming pattern, distribution, and karyotype: S. chiapas sp. nov., S. cusuco sp. nov., S. diezmilpies sp. nov., S. durango sp. nov., S. ecuadorensis sp. nov., S. faulkneri sp. nov., S. honduras sp. nov., S. hondurasito sp. nov., S. mineraldelmonte sp. nov., S. nuevoleon sp. nov., S. perote sp. nov., S. saltillo sp. nov., S. sanfelipe sp. nov., and S. zimapan sp. nov. We transfer the following 16 described United States taxa, plus S. cephalotes from the “west coast of North America”, from Stenopelmatus to Ammopelmatus: A. cahuilaensis, A. californicus, A. cephalotes, A. fasciatus, A. fuscus, A. hydrocephalus, A. intermedius, A. irregularis, A. longispinus, A. mescaleroensis, A. monahansensis, A. navajo, A. nigrocapitatus, A. oculatus, A. pictus, and A. terrenus, along with the Mexican taxon A. comanchus: these species will be discussed in a subsequent paper (Weissman et al. in prep). We believe that all new Jerusalem cricket species descriptions should include, at a minimum, calling drum (most important) and DNA information

    Table S1

    No full text
    Tissue samples used in this study including mtDNA lineage/clade and microsatellite cluster assignments, whether morphology was scored, and specific locality information

    CHIONACTIS_mtDNA_ND1_Matrix

    No full text
    ND1 mtDNA sequence data for all samples used in this study. The sequence matrix is aligned and in nexus format
    • 

    corecore