1,280 research outputs found

    Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure

    Get PDF
    Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover

    A model of plant canopy polarization

    Get PDF
    A model for the amount of linearly polarized light reflected by the shiny leaves of grain crops is based on the morphological and phenological characteristics of the plant canopy and upon the Fresnel equations which describe the light reflection process at the smooth boundary separating two dielectrics. The theory used demonstrates that, potentially, measurements of the linearly polarized light from a crop canopy may be used as an additional feature to discriminate between crops such as wheat and barley, two crops which are so spectrally similar that they are misclassified with unacceptable frequency. Examination of the model suggests that, potentially, satellite polarization measurements may be used to monitor crop development stage, leaf water content, leaf area index, hail damage, and certain plant diseases. The information content of these measurements is needed to evaluate the proposed polarization sensor for the satellite-borne multispectral resource sampler

    Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    Get PDF
    The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions

    Simulated response of a multispectral scanner over wheat as a function of wavelength and view/illumination direction

    Get PDF
    The reflectance response with view angle of wheat, was analyzed. The analyses, which assumes there are no atmospheric effects, and otherwise simulates the response of a multispectral scanner, is based upon spectra taken continuously in wavelength from 0.45 to 2.4 micrometers at more than 1200 view/illumination directions using an Exotech model 20C spectra radiometer. Data were acquired six meters above four wheat canopies, each at a different growth stage. The analysis shows that the canopy reflective response is a pronounced function of illumination angle, scanner view angle and wavelength. The variation is greater at low solar elevations compared to high solar elevations

    Linear polarization of light by two wheat canopies measured at many view angles

    Get PDF
    The linear polarization and reflection of visible light by wheat as a function of sun-view directions, crop development stage, and wavelength were examined. Two-hundred spectra were taken continuously in wave-lengths from 0.45 to 0.72 Micron in 33 view directions using an Exotech model 20C spectroradiometer six meters above two wheat canopies in the boot and fully headed maturity stages. The analysis results show that the amount of linearly polarized light from the wheat canopies is greatest in the blue spectral region and decreases gradually with increasing wavelength. The results also show that the linearly polarized light from the canopies is generally greatest in the azimuth direction of the Sun and tends toward zero as the view direction tends toward the direction of the hot spot or anti-solar point. It is demonstrated that the single, angle of incidence of sunlight on the leaf, explains almost all of the variation of the amount of polarized light with Sun-view direction

    Variability of reflectance measurements with sensor altitude and canopy type

    Get PDF
    Data were acquired on canopies of mature corn planted in 76 cm rows, mature soybeans planted in 96 cm rows with 71 percent soil cover, and mature soybeans planed in 76 cm rows with 100 percent soil cover. A LANDSAT band radiometer with a 15 degree field of view was used at ten altitudes ranging from 0.2 m to 10 m above the canopy. At each altitude, measurements were taken at 15 cm intervals also a 2.0 m transect perpendicular to the crop row direction. Reflectance data were plotted as a function of altitude and horizontal position to verify that the variance of measurements at low altitudes was attributable to row effects which disappear at higher altitudes where the sensor integrate across several rows. The coefficient of variation of reflectance decreased exponentially as the sensor was elevated. Systematic sampling (at odd multiples of 0.5 times the row spacing interval) required fewer measurements than simple random sampling over row crop canopies

    Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry

    Get PDF
    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time

    Unusual structural tuning of magnetism in cuprate perovskites

    Full text link
    Understanding the structural underpinnings of magnetism is of great fundamental and practical interest. Se_{1-x}Te_{x}CuO_{3} alloys are model systems for the study of this question, as composition-induced structural changes control their magnetic interactions. Our work reveals that this structural tuning is associated with the position of the supposedly dummy atoms Se and Te relative to the super-exchange (SE) Cu--O--Cu paths, and not with the SE angles as previously thought. We use density functional theory, tight-binding, and exact diagonalization methods to unveil the cause of this surprising effect and hint at new ways of engineering magnetic interactions in solids.Comment: 4 pages, with 4 postscript figures embedded. Uses REVTEX4 and graphicx macro

    A laser technique for characterizing the geometry of plant canopies

    Get PDF
    The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower
    corecore