NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

AgRISTARS

"Made available under NASA sponsorship
"Made available under NASA sponsorship
in the interest of early and wide disin the interest of early and wide disin the interest intermediate thereof."

Supporting Research

-E82-101 43

SR-P1-04191 NAS9-15466

A Joint Program for Agriculture and Resources Inventory Surveys Through Acrospace Pemote Sensing

November 1981

Technical Report

Variability of Reflectance Measurements with Sensor Altitude and Canopy Type

by C. S. T. Daughtry, V. C. Vanderbilt and V. J. Pollara

(E82-10145) VARIABILITY OF REFLECTANCE
MEASUREMENTS WITH SENSOR ALTITUDE AND CANOFY
TYPE (Purdue Univ.) 24 p HC A02/MF A01

N82-21672

CSCL 20F

Unclas

Purdue University Laboratory for Applications of Remote Sensing West Lafayette, Indiana 47907

G3/43

SR-P1-04191 NAS9-15466 LARS 111481

Variability of Reflectance Measurements with Sensor Altitude and Canopy Type

C. S. T. Daughtry, V. C. Vanderbilt, and V. J. Pollara

Purdue University
Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907

Star Information Form

1, Report No.	2. Government Accession No.	3, Recipient's Catalog No.								
SR-P1-04191										
4. Title and Subtitle		5. Report Date								
Variability of Reflectance	Measurements with Sensor	October, 1	981							
Altitude and Camppy Type		6. Performing Organi	zation Code							
7. Author(s)		8. Performing Organi								
C.S.T. Daughtry, V.C. Vande	rbilt, and V.J. Pollara	LARS 11148	.1							
6. Sedemin Greenhaller Name and Address	***	10. Work Unit No.								
9. Performing Organization Name and Address Purdue University		x								
Laboratory for Applications	of Remote Sensing	11. Contract or Grant	No.							
1220 Potter Drive		NAS9-15466	•							
West Lafayette, Indiana 47	90ន	13. Type of Report ar								
12. Sponsoring Agency Name and Address		Technical	, , , , , , , , , , , , , , , , , , , ,							
NASA Johnson Space Center	4.4	14 Connection Associate								
Earth Resources Research Di	vision	14. Sponsoring Agent	iy Code							
Houston, Texas 77058		<u> </u>								
15. Supplementary Notes										
16. Abstract Reliance on portable	, ground-based sensors for mea		ofloctors							
	able and reliable measurement									
	cible canopy reflectance data									
determine how the canopy reflectance varies as a function of sensor altitude above the crop, and particularly, what minimum altitude is needed to acquire repeatable										
reflectance measurements with a desired precision. Data were acquired in 1979 on										
three canopies, mature corn planted in 76 cm rows, mature soybeans planted in 96 cm										
rows with 71 percent soil cover, and mature soybeans planted in 76 cm rows with 100										
	e acquired using a Landsat bar									
	w (FOV) at ten altitudes rang									
	titude, measurements were take	en at 15 cm in	cervars aroug							
a 2.0 m transect perpendicula	e plotted as a function of al	titude and her	d gontal							
	ariance of measurements at lov									
	appear at higher altitudes who									
	fficient of variation of refle									
	ated. Systematic sampling (a									
	1) required fewer measurements									
	es. Extreme care must be exer									
	sensor altitudes where the d									
at the top of the canopy is s	maller than several multiples	of row spacin	ıg.							
17. Key Words (Suggested by Author(s))	18. Distribution Statement									
Remote sensing, radiometer,										
sampling errors, Zea mays L	••									
Glycine max (L.) Merr.										
19. Security Classif. (of this report)	20. Security Classif, (of this page)	21. No. of Pages	22. Price							
19. Geontry Cressus for time reports	The second second for mine builds.	THE PERSON NAMED OF THE PE								
			1 1							

INTRODUCTION

Reliance on portable. ground-based sensors for measuring cropreflectance has created a need for comparable and reliable measurement procedures capable of providing calibrated and reproducible canopy reflectance data. Acquisition of reproducible data is assured in part if the field of view (FOV) of the measuring sensor contains a representative sample of the canopy. The particular portion of the canopy in the sensor FOV changes with the altitude of the sensor above the canopy. For example, readings taken at low altitudes might tend to be erratic, because a single leaf might fill the sensor FOV, biasing the As the sensor altitude above the canopy increases, the measurements. of the measurements should improve because repeatability composition, the relative abundance of } ight and dark areas, of the sensor FOV tends to represent the canopy better.

Previous researchers working with field crops have positioned their radiometers at various altitudes ranging from less than 2.0 m to more than 9.0 meters above the soil (Table 1). Some researchers have held their radiometers at arm's length for relatively short crops (e.g., wheat and sovbeans) while others have used ladders, hand-held booms, truck-mounted booms. and aerial lift towers to position their radiometers above relatively tall crops (e.g., corn). Jackson et al. (1980) described and discussed techniques for operating radiometers in a There appears to be little consensus about what hand-held mode. altitude a radiometer should be positioned or how many measurements per plot are required to acquire reliable spectral data.

The objective of the experiment was to determine how canopy reflectance varies as a function of sensor altitude above the crop, and particularly, what minimum altitude is needed to acquire repeatable reflectance measurements with a desired precision.

Table 1. Examples of sensor altitudes used by various researchers.

Investigator	Crop	Maximum Canopy Height	Row Spacing	Sensor Altitude	Sensor	No. Rows at soil a	s in FOV at canopy surface	Number of Observations per plot
			E-		degrees			
Aase and Sidoway (1980)	Wheat	(0.9)	0.30	1.9	15	1.7	6.0	9
Daughtry et al. (1980)	Wheat	6.0	0.18	3.4	15	5.0	3.7	2
Hinzman et al. (1981)	Wheat		0.18	0.9	15	8.8	7.3	+,
Pinter et al. (1981)	Wheat	1.0	0.18	2.0	15	3.0	1.5	9
Tucker et al. (1981)	Wheat	1.2	0.18	2.2	25	5.7	2.6	7
Kollenkark et al. (1981)	Soybeans	1.1	0.25	7. 2. c	15 51	بن د بن «	4.3	0,0
			Ö.15	, e, e	15.	6.0	4.0	4 64 6
		0.0	0.90	3.4	13	1.0	0.7	7 7
Tucker et al. (1979)	Corn Soybeans	(2.5)	0.91	3.5	25 25	1.7	0.3	24 16
Holben et al. (1980)	Soybeans	(1.0)	0.76	2.0	25	1.2	9.0	7
Nash et al. (1981)	Corn	3.0	0.76	5.2	15	1.8	0.8	2
Walburg et al. (1981)	Corn	3.2	0.71	1.6	15	3.4	2.2	*
Kimes et al. (1981)	Corn	(2.5)	92.0	3.6	28	2.5	8.0	7
A STATE OF THE PARTY OF THE PAR								

t Values in parenthesis are estimated.

^{*} Two observations per plot were acquired for a random subset of plots to estimate within plot variance.

MATERIALS AND METHODS

Data were acquired at the Purdue University Agronomy Farm, West Lafayette, Indiana, on 10 September 1979 for three crop canopies: (1) corn (Zea mays L.), (2) soybeans (Glycine max (L.) Merr.) with complete soil cover and (3) soybeans with incomplete soil cover. All three canopies were grown on Chalmers silty clay loam (typic Argiaquoll) which has a dark gray (10 YR 4/1) surface when dry.

Pioneer 3780 corn was planted in 76-cm wide north-south (N-S) rows on 31 May 1979 and thinned to 54,000 plants/ha. On 10 September the corn was 2.9 m high, covered more than 95% of the soil, and was in the beginning dent stage of development (Hanway, 1963).

Amsoy 71 soybeans were planted in 76-cm wide, N-S rows on 20 May 1979 and developed a closed or full canopy with 100% soil cover. On 10 September these soybeans were 1.1 m high, slightly lodged, and were beginning to mature, stage R7, (Fehr et al., 1971). A few yellow leaves were visible among the upper leaves of the canopy.

A second field of Amsoy 71 soybeans was planted in 96-cm wide, N-S rows on 10 June 1979. These soybeans were 0.9 m tall, and covered 71% of the soil with a 20 to 30-cm strip of bare soil between the rows. At the time of these measurements the soybeans were in the full seed, stage R6, development stage (Fehr et al., 1971).

Spectral data were acquired with an Exotech 100 radiometer in four wavelength bands, 0.5 to 0.6-, 0.6 to 0.7-, 0.7 to 0.8-, and 0.8 to corresponding the four to spectral bands of the Landsat multispectral scanner (MSS). Measurements in all bands were taken simutaneously and recorded by a printing data logger. The radiometer and a camera were mounted on the boom of an aerial lift truck and were elevated to altitudes ranging from 0.2 to 10 m above the crop canopy At altitudes less than 0.6 m above the canopy, (Table 2). measurements were taken at 7.5-cm intervals along a 2.0 m transect perpendicular to the crop's row direction. At all other altitudes, 13 measurements were taken at 15-cm intervals. Less than 2.0 minutes were required to collect two replications of spectral data along the transect at each altitude. Spectral data were acquired during an interval from 1.5 hours before to 2.5 hours after solar noon on 10 September 1979 under clear skies.

A 1.2 m square panel painted with highly reflecting barium sulfate was used as a reference surface for determination of reflectance factor (Robinson and Biehl, 1979). This reflectance standard provided a field calibration reference with stable, known reflectance properties. A dark level response of the instrument was also obtained by holding an opaque light-tight apparatus against the instrument's optical ports to measure

Table 2. Mean reflectance factor as a function of sensor altitude for three crop canopies.

Note Note	the same of the sa	Altitude Above			Name Taxab	h Dand	
Corn Canopy	Above			0 5-0 6			
3.1			- 11	0.5-0.0	Reflect		0.0-1.1
3.1		•				u, //	
3.5				Corn Can	ору		
3.8				4.4			31.6
4.2 1.3 26 3.7 3.7 20.1 30.9 4.6 1.7 26 4.2 4.2 21.5 33.2 5.0 2.1 26 3.9 3.7 20.7 31.1 6.2 3.3 26 5.0 4.8 26.9 39.8 7.7 4.8 26 4.9 4.6 26.2 38.7 9.2 6.3 26 4.7 4.4 25.0 36.9 10.7 7.8 26 4.7 4.4 24.8 36.9 12.2 9.3 26 4.7 4.1 23.9 35.8 13.8 10.9 26 4.8 4.2 24.5 36.8 Soybean Row Canopy 1.1 0.2 52 5.5 4.3 33.2 43.6 1.5 0.6 52 5.4 4.8 32.2 45.8 1.9 1.0 26 5.0 4.5 31.5 44.4 2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.6 31.2 44.8 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 8.8 7.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 28.1 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 5.1 34.5 31.4 44.3 3.1 2.0 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.4 4.9 32.0 45.8		0.6	52	3.7	3.8	20.5	
4.6 1.7 26 4.2 4.2 21.5 33.2 5.0 2.1 26 3.9 3.7 20.7 31.1 6.2 3.3 26 5.0 4.8 26.9 39.8 7.7 4.8 26 4.9 4.6 26.2 38.7 9.2 6.3 26 4.7 4.4 25.0 36.9 10.7 7.8 26 4.7 4.4 24.8 36.9 12.2 9.3 26 4.7 4.1 23.9 35.8 13.8 10.9 26 4.8 4.2 24.5 36.8 Soybean Row Canopy 1.1 0.2 52 5.5 4.3 33.2 43.6 1.5 0.6 52 5.4 4.8 32.2 45.8 1.9 1.0 26 5.0 4.5 31.5 44.4 2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 27.1 39.4 10.2 9.3 26 5.6 5.1 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 29.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 32.7 45.5 24.4 1.3 26 5.6 5.1 34.8 28.1 40.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 50.3 2.0 0.9 26 5.5 5.1 32.5 46.2 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1				4.2			32.8
5.0							
6.2 3.3 26 5.0 4.8 26.9 39.8 7.7 4.8 26 4.9 4.6 26.2 38.7 9.2 6.3 26 4.7 4.4 25.0 36.9 10.7 7.8 26 4.7 4.4 24.8 36.9 12.2 9.3 26 4.7 4.1 23.9 35.8 13.8 10.9 26 4.8 4.2 24.5 36.8 Soybean Row Canopy 1.1 0.2 52 5.5 4.3 33.2 43.6 1.5 0.6 52 5.4 4.8 32.2 45.8 1.9 1.0 26 5.0 4.5 31.5 44.4 2.2 1.3 26 5.2 4.8 31.7 45.6 2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 28.1 40.6 27.1 39.4 10.2 9.3 26 5.6 5.1 34.8 48.6 27.1 39.4 44.8 31.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
7.7			26			20.7	31.1
9.2 6.3 26 4.7 4.4 25.0 36.9 10.7 7.8 26 4.7 4.4 24.8 36.9 12.2 9.3 26 4.7 4.1 23.9 35.8 13.8 10.9 26 4.8 4.2 24.5 36.8							
10.7							
12.2 9.3 26 4.7 4.1 23.9 35.8 13.8 10.9 26 4.8 4.2 24.5 36.8 Soybean Row Canopy 1.1 0.2 52 5.5 4.3 33.2 43.6 1.5 0.6 52 5.4 4.8 32.2 45.8 1.9 1.0 26 5.0 4.5 31.5 44.4 2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
13.8 10.9 26 4.8 4.2 24.5 36.8 Soybean Row Canopy 1.1 0.2 52 5.5 4.3 33.2 43.6 1.5 0.6 52 5.4 4.8 32.2 45.8 1.9 1.0 26 5.0 4.5 31.5 44.4 2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
Soybean Row Canopy							
1.1	13.8	10.9	26	4.8	4.2	24.5	36.8
1.5			So	ybean Row	Canopy		
1.5	1.1	0.2	52	5.5	4.3	33.2	43.6
1.9							
2.2 1.3 26 5.2 4.8 31.7 45.6 2.6 1.7 26 4.9 4.5 31.0 44.2 3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
2.6							
3.0 2.1 26 5.1 4.6 31.2 44.8 4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
4.2 3.3 26 5.1 4.9 28.0 40.3 5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							44.8
5.7 4.8 26 5.0 4.8 28.1 40.6 8.8 7.9 26 4.8 4.6 27.1 39.4 10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	4.2		26		4.9	28.0	40.3
10.2 9.3 26 4.6 4.4 27.5 40.1 Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	5.7	4.8	26	5.0	4.8	28.1	40.6
Soybean Full Canopy 1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	8.8	7.9	26	4.8	4.6	27.1	39.4
1.3 0.2 51 5.1 4.3 33.0 44.6 1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	10.2	9.3	26	4.6	4.4	27.5	40.1
1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1			<u>s</u>	oybean Ful	1 Canopy		
1.7 0.6 51 5.4 5.1 34.8 50.3 2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	1.3	0.2	51	5.1	4.3	33.0	44.6
2.0 0.9 26 5.0 4.6 32.7 45.5 2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
2.4 1.3 26 5.6 5.1 34.8 48.6 2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1							
2.8 1.7 26 5.1 4.5 31.4 44.3 3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	2.4	1.3					
3.1 2.0 26 5.5 4.9 34.0 47.2 4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	2.8	1.7			4.5		44.3
4.3 3.2 26 5.5 5.1 32.5 46.2 5.8 4.7 26 5.4 4.9 32.0 45.8 8.9 7.8 26 5.2 4.8 31.0 44.1	3.1	2.0			4.9		47.2
8.9 7.8 26 5.2 4.8 31.0 44.1	4.3	3.2			5.1		
8.9 7.8 26 5.2 4.8 31.0 44.1	5.8	4.7	26	5.4	4.9	32.0	45.8
10.4 9.3 26 5.3 4.8 31.0 43.8	8.9	7.8	26		4.8	31.0	
	10.4	9.3	26	5.3	4.8	31.0	43.8

the amplifier offset. The response of the reference panel was measured about every 20 minutes during the data collection period and the dark level every 40 minutes. These values were then used in the following equation to calibrate readings taken over the plots:

$$RF(\lambda) = (Ds(\lambda) - ds(\lambda)) / (Dr(\lambda - ds(\lambda)) + Rr(\lambda))$$
[1]

Where, RF(λ) = reflectance factor (%) at a specific wavelength interval (λ),

 $Ds(\lambda) = response of instrument to scene (crop canopy),$

 $ds(\lambda) = dark$ level response of instrument,

 $Dr(\lambda) = response of instrument to painted barium sulfate reference standard.$

 $Rr(\lambda)$ = reflectance (%) of painted barium sulfate reference standard (measurement made in laboratory by comparison with pressed barium sulfate).

The reflectance data were plotted as a function of altitude and horizontal distance across the row to verify that the variance of reflectance at low altitudes was attributable to row effects. Since the two visible wavelength bands are highly correlated to each other, as are the two infrared bands, the 0.6 to 0.7 µm band 0.8 to 1.1 µm band were selected as representatives of the visible and near infrared bands, respectively. The change in the coefficient of variation (CV) for reflectance in each band was described as a function of sensor altitude above the crop using stepwise regression. The number of replications (measurements) required for a 90% probability of obtaining a significant result at the alpha = 0.10 level can be estimated using the following equation from Cochran and Cox (1957):

$$r \ge 2 (s/d)^2 (t_1 + t_2)^2$$
 [2]

where, r = number of replications,

d = true difference that is desired to detect,

s = true standard error per unit,

t₁ = significant value of t in the test of significance,

 t_2 = value of t in the ordinary table corresponding to (1-P).

Since the value of r depends only on the ratio of s/d, coefficient of variation and percent difference were substituted for s and d, respectively, in equation [2]. In application of equation [2] the number of degrees of freedom in t_1 and t_2 depends on r. In order to start the calculations, r was assumed to be infinity and then adjusted in subsequent calculations until the smallest number of replications that would satisfy the condition in equation [2] was determined.

An alternative to a random sampling scheme for row crops might be to sample at half row spacing intervals across the canopy. In the extreme case the sensor would view only the crop when centered over the row and only soil when positioned between the rows. The mean of these two observations may more nearly represent the overall canopy reflectance than either alone. To evaluate this stratified sampling approach the coefficients of variation for pairs of measurements at half row spacing intervals for each altitude were calculated and regressed as a function of sensor altitude. The number of paired observations needed to obtain the desired precision was estimated using equation [2], but was converted to the number of individual measurements for comparison.

RESULTS AND DISCUSSION

Variation Due to Rows

Mean reflectance factor of the canopy (the average of all measurements taken at one altitude along the 2.0 m transect) varied slightly with sensor altitude (Table 2). A portion of this variation in the mean is associated with experimental technique which, for each sensor altitude, did not always position identically the beginning of the 2.0 m transect above the same spot of the canopy. The portion of the canopy in the sensor FOV increased with sensor altitude and changed if and when the horizontal position of the 2.0 m transect changed. During data aquisition, observation of the characteristics of the lift truck and measurement apparatus indicated that errors in horizontally positioning the transect at each altitude over the same location of the canopy were two to three centimeters across the rows (along the transect) and fractions of a meter along the rows.

The reflectance data were plotted as a function of sensor altitude and horizontal distance across the rows (Figures 1 to 3). The variation of the reflectance factor measurements at low altitudes is attributed to row effects which diminished at higher altitudes where the sensor integrated over several rows.

The principal components of the corn canopy were sunlit leaves, shaded leaves, and shaded soil. Sunlit soil was a minor component of the sensor FOV as very little direct sunlight penetrated to the soil surface. At the lowest sensor altitude, less than 0.2 m above the canopy, the reflectance factor in the visible wavelength region (Figure 1) varied from less than half to more than double the mean reflectance factor as the sensor moved across the rows and viewed different proportions of shadows and sunlit leaves. At the same altitude, the reflectance factor in the infrared changed from 0.5 to 1.5 times the mean as the sensor moved across the rows. Both visible and infrared canopy reflectance factors have maxima when the sensor viewed sunlit leaves and minima when the sensor viewed shadows. The amplitude of the variation in reflectance factor in both bands decreased rapidly as the sensor was elevated.

The soybean row canopy contained sunlit soil, sunlit vegetation, shaded soil, and shaded vegetation. In the visible wavelengths (Figure 2), the canopy reflectance factor was greatest (more than twice the mean canopy reflectance factor) when the sensor was positioned over sunlit soil, indicating that sunlit soil was the brightest component of the canopy. When the sensor was positioned over foliage - presumably sunlit leaves, the canopy reflectance factor corresponded with the mean canopy

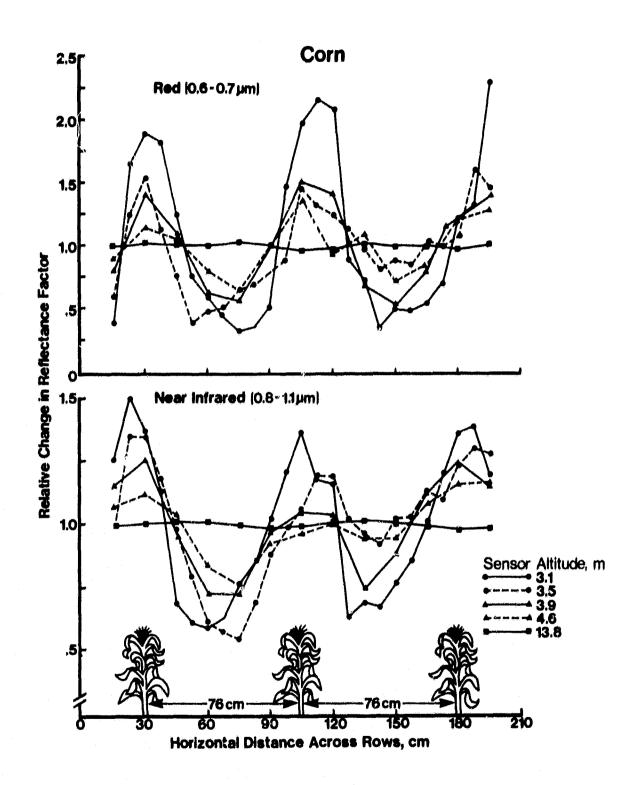


Figure 1. Relative changes in reflectance factor as a function of sensor altitude and horizontal distance across 76 cm rows of corn.

Soybean Row Canopy

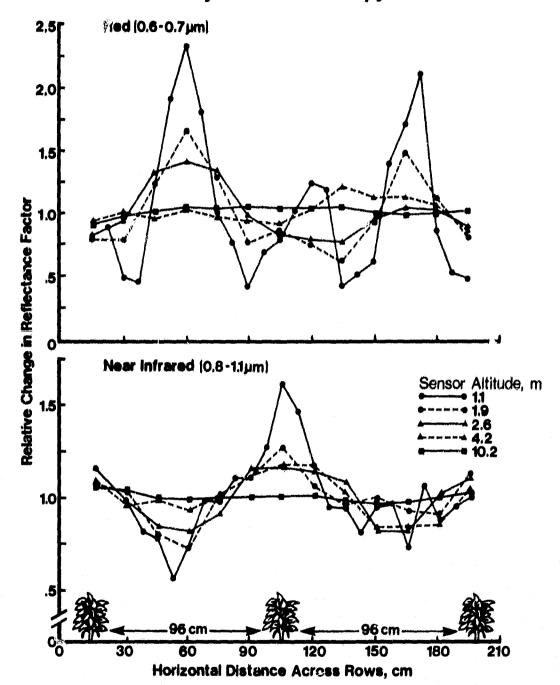


Figure 2. Relative changes in reflectance factor as a function of sensor altitude and horizontal distance across 96 cm rows of soybeans with incomplete soil cover.

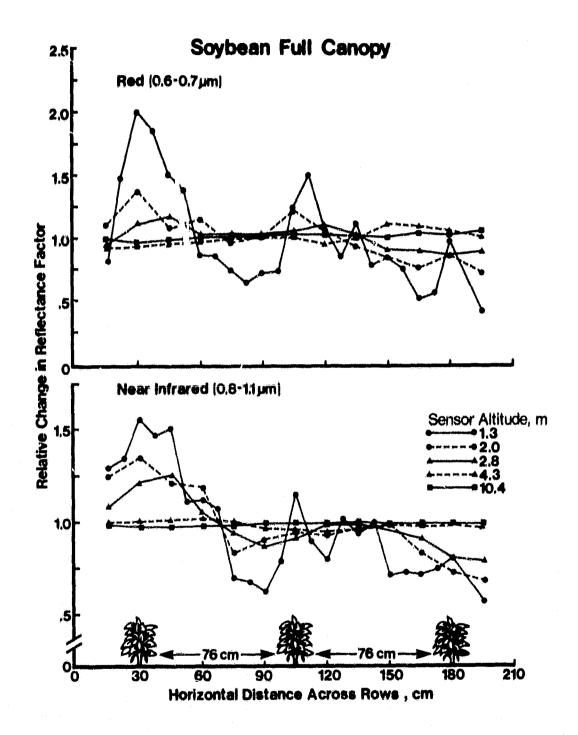


Figure 3. Relative changes in reflectance factor as a function of sensor altitude and horizontal distance across 76 cm rows of soybeans with complete soil cover.

reflectance factor. When the sensor was positioned over shaded soil and vegetation which the ancillary photographs indicated was shaded, the canopy reflectance factor was less than the mean. This contrasts with the corn canopy where leaves were the brightest components. The near infrared canopy reflectance factor was greatest for sunlit leaves and lowest for bare soil and shadows between the rows. Shadows in the infrared are not as dark as in the visible due to the multiple scattering of near infrared energy by leaves.

The canopy reflectance factors in the visible and near infrared wavelength bands even varied with sensor position across the canopy with the completely covered soil (Figure 3). A few senescing (yellow) leaves at the top of the canopy and some isolated lodging which created relief in the canopy surface contributed to variations in reflectance factor measured with position across the canopy. However, at the lowest altitudes, the ranges in canopy reflectance factors of this full sombean canopy (Figure 3) were less than either the corn (Figure 1) or the some canopy with rows (Figure 2). The variation in reflectance factor measured across this full canopy of some was more random and less a function of rows than for the previous two canopies.

Coefficient of Variation Versus Altitude

Coefficient of variation (CV) normalizes standard deviations by the mean and is useful for comparing relative variations of both the visible and near infrared bands. The CV at each altitude was calculated using four sampling schemes. First, all measurements across two complete row spacing intervals (e.g., 1.5 m of the 2.0 m transect for the corn and full soybean canopies and 1.9 m of the 2.0 m transect for the row canopy soybeans) were used to calculate the CV at each altitude. This analysis approach assumes simple random sampling of the canopy.

A second sampling scheme used means for all possible pairs of measurements (25 pairs) acquired at 15-cm intervals across each canopy to calculate CV's for each altitude. This scheme provided a check of any gains made in reducing CV simply by using means instead of individual measurements.

The next two sampling schemes considered the means of pairs of samples acquired at one half of the row spacing intervals across the canopy. For example, if one measurement was acquired directly over the row, then the second measurement of the pair would be acquired halfway between the two adjacent rows. The third sampling scheme included all possible pairs of measurements (20 pairs) acquired at 45-cm intervals across the canopy, while the fourth scheme considered only the means of those measurements (8 pairs) acquired directly over the rows and directly over the middle or furrow of the two adjacent rows. In

practice, these half row spacing sampling schemes were not perfect, but were within 7.0 cm of the desired sample spacing for the 76 cm rows and within 3.0 cm for the 96 cm rows.

The CV of the canopy reflectance factor in both visible and near infrared bands decreased significantly with increasing sensor altitude when the diameter of the sensor's field of view at the top of the canopy exceeded the row spacing (Figures 4, 5, 6). The CV decreased more rapidly for the soybean canopy with 100% soil cover (Figure 6) than for the soybean canopy with rows and 71% soil cover (Figure 5).

For all three canopies, the CV for the red band was greater than the CV for the near infrared band. In the visible wavelength bands, the greater contrast between sunlit soil/sunlit vegetation and shadows probably contributed to the greater CV for the red band compared to the infrared band.

The three systematic sampling schemes employing means of two measurements consistently had lower CV's than the simple random sampling using individual measurements. This is expected since the variance of a sample of means drawn from a population is less than the variance of individuals drawn from the same population (Cochran and Cox. 1957).

Sampling at half row spacing intervals (schemes 3 and 4) reduced the CV for both visible and near infrared reflectance by nearly 50% (Figures 4, 5, and 6). Reductions in CV are possible for canopies with distinct rows if knowledge of the canopies is employed and samples are acquired at intervals which are odd multiples of 0.5 times the row spacing. However, the asymmetry across the rows shown in Figures 1, 2, and 3 indicate that taking one measurement over a row and another over the soil and then averaging the two may not yield a sufficiently accurate value of the composite scene. Taking a number of measurements as the sensor is moved across the rows may be a more appropriate sampling scheme, especially at low altitudes if the diameter of the field of view is less than the row spacing. Care must be exercised in making measurements and in interpreting data acquired at low altitudes.

Practical Applications

In practice, a researcher wants to know how many observations or measurements must be acquired to be reasonably confident of detecting specific differences among crop canopies. He faces questions about how to allocate the finite number of measurements that can be acquired in a reasonable length of time between the number of measurements per plot and the total number of plots (treatments) in the experiment. If he does not acquire enough samples or measurements per plot, his estimate of the true reflectance of a plot will be too inaccurate to be useful.

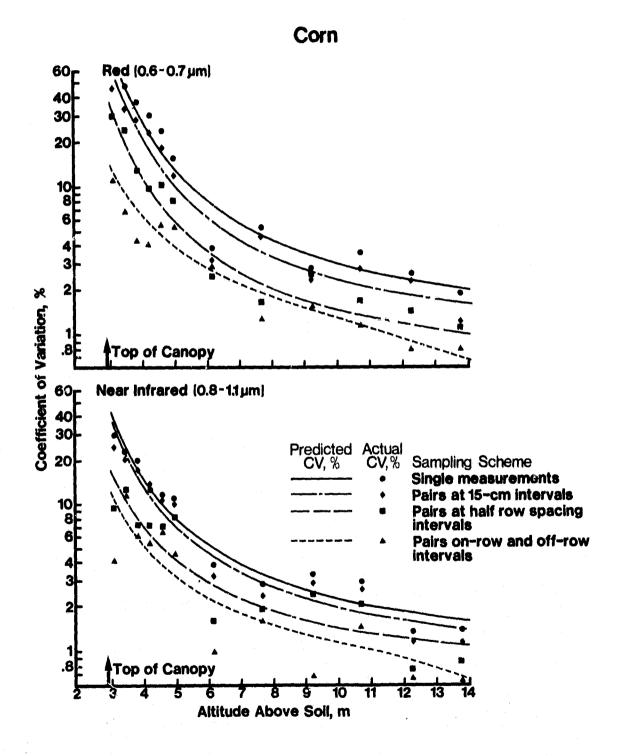


Figure 4. Changes in predicted and actual coefficients of variation (CV) for reflectance factors of a soybean canopy with incomplete soil cover.

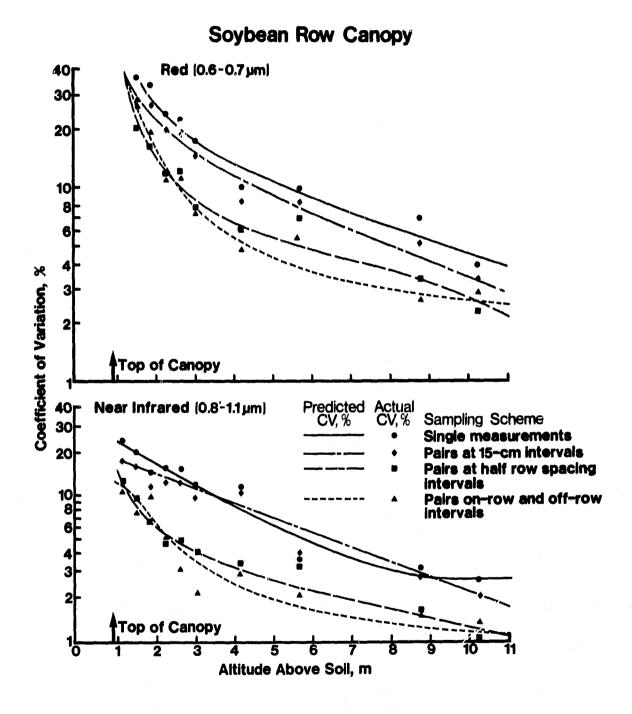


Figure 5. Changes in predicted and actual coefficients of variation (CV) for reflectance factors of a soybean canopy with incomplete soil cover.

Soybean Full Canopy

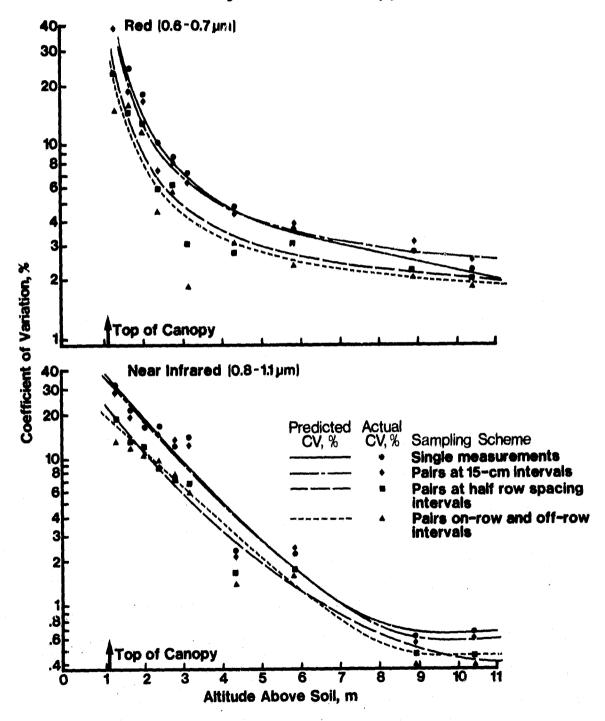


Figure 6. Changes in predicted and actual coefficients of variation (CV) for reflectance factors of a soybean canopy with complete soil cover.

Conversely, he also wants to avoid taking more measurements pur plot than is required to obtain an accurate estimate since such an approach would limit the number of plots that can be measured and possibly the scope of the experiment.

The first step is to decide how small a difference among treatments must be detected - how large an error in reflectance can be tolerated. This demands careful thinking about the use to be made of the estimates of reflectance and about the consequences of a sizeable error. The figure finally reached may be quite arbitrary initially, but does represent a goal which may be refined as experience is gained.

In this paper, we chose four degrees of precision or true differences among treatments - 2, 5, 10, and 20% of the mean reflectance. We further specified that we wanted to be 90% confident of detecting significant differences at the alpha = 0.10 level.

Table 3 shows the minimum number of measurements required by the four sampling schemes for detecting true differences in three crop canopies. This represents the smallest number of measurements that satisfied equation [2]. Although sampling schemes 2, 3, and 4 used means of pairs of measurements, the data in Table 3 are individual measurements, e.g., 27 pairs of measurements predicted by equation 2 for the sampling scheme using random pairs at 15-cm intervals at 4.0 m above the soil for the corn canopy actually represents 54 individual measurements.

The number of measurements required for a given level of precision decreases with increasing sensor altitude and as the sensor's FOV contains a more representative sample of the canopy. Many Lasurements are required at low altitudes because reflectance measurements tended to be erratic as the sensor is moved across the rows (Figures 1, 2, and 3). For example, to detect 20% differences in red (0.6 to 0.7 µm) canopy reflectance factor of two soybean canopies with approximately 70% soil cover using the simple random sampling scheme, at least 39 measurements are required when the sensor is 2.0 m above the soil or about as high as a person with an outstretched arm can hold a radiometer. example, the number of reflectance measurements decreases rapidly as the sensor is elevated; 19 measurements are required at 3.0 m and only five at 7.0 m above the soil. Altitudes greater than about 2.0 m require that the radiometer be mounted on a boom or in some manner suspended above the crop and away from the operator. Tsuchida (1981) describes and evaluates several booms designed for field research radiometers.

The number of measurements required for any given level of precision in the red $(0.6 \text{ to } 0.7 \text{ }\mu\text{m})$ band was larger than for the near infrared $(0.8 \text{ to } 1.1 \text{ }\mu\text{m})$ band (Table 3). This is expected from the larger CV shown in Figures 4, 5, and 6 for the red band compared to the near infrared band. However, because detectors for both bands generally

Table 3. Minimum number of measurements required by four sampling schemes for detecting true differences among treatments using $\alpha = 0.10$ test of significance and a 90% probability of obtaining a significant result.

			Sampling Schemen															
	torner.	Altituda	Simpl	e Ran	don San	pling [†]	Rando	m Pair	m at 1	5 cm	Mando	a Pair	s at O	.5 W	Paira "	on low	and o	ff row"
								True	Diffe	rences	an Perc	ent of	the H	ean				
Canopy Type (Spectral Band)	Above Soil	Above Canopy	2	5	10	20	2	5	10	20	2	5	10	20	2	5	10	20
lorn	*****	6	36 P M A4					n	nepet	of indi	vidual	POGR ILI	ements	******	*******	****		
(0,6-0,7 μm)	4 5 7 9	1 2 4 6	72 41	31	41 9 5	44 12 4 3	- - 90	- 40 18	50 12 8	54 16 6 4	80 36	64 16 10	64 20 8 4	20 8 4 4	56 28	74 30 12 8	22 10 6 4	8 6 4 4
	i e ee	12	41 21	6 5	3	2 2	52 28	12 8	4	4	22 14	6	4	2	16 8	6 4	4	2
Corn (0.8-1.1 pm)	4 5 7 9	1 2 4 6 8	82 38 24 14	56 15 8 6	49 16 5 3	14 5 3 2	- 60 38	90 24 14	80 26 10 6	24 10 4 4	60 32 22	90 34 14 8	26 12 6 4	10 6 4 4	- 40 22 14	52 22 10 6	1 <u>6</u> 6 4	<u>6</u> 4 4
	15	12	14	4	2	2	22	6	4	4	16	6	4	2	6	4	2	ž
Soybean Row (O.6⇔O.7 μm)	2 3 5 7 9	1 2 4 6 8	- - - 88	50 27 16	68 27 14 8	39 19 8 5 4	94	68 34 18	40 20 12 8	56 213 14 8 6 4	- - 56	56 36 22 12	92 36 18 12 8	26 12 8 6 4	- - 90 74	38 24 18	40 12 8 8	66 14 6 4 4
Scybean Row (O,8-1,1 µm)	2 3 5 7 9	1 2 4 6 8 10	72 41 49	34 13 8 10	60 31 10 5 4	17 9 4 3 2	86 36	88 38 18	88 56 26 12 8	24 18 10 6 4	76 42 26 16	66 32 16 10 8	20 12 6 6 4 4	8 6 4 4 4	26 20 18	68 24 10 8 6	20 10 6 4 4	8 4 4 4 2
Soybean Full (O.6-0,7 µm)	2 3 5 7 9	1 2 4 6 8	92 55 36 18	46 16 11 8 5	46 13 6 4 3	13 5 3 2 2 2	- - 90 76	82 32 22 18 16	78 24 12 6 8 6	22 10 6 4 4	- 68 56 48	46 20 14 12	40 14 8 6 6	14 6 4 4 4	88 60 48 40	48 18 14 12 10	32 12 8 6 6	10 6 4 4 4
Soybean Full (O,8-1,1 µm)	2 3 5 7 9	1 2 4 6 8	36 4 2	8 2 1	80 22 3 2 1	22 7 2 1 1	88 16 10	18 6 4	42 8 4 4 4	40 14 4 2 2 2	- 44 12 4	62 10 4 2	60 18 6 2 2	18 0 4 2 2	52 10 6 6	74 12 4 4	58 22 6 4 2	16 8 4 2 2 2

[†]Simple random sampling scheme assumes that each measurement is acquired independently of any previous measurements.

These two sampling schemes assume that measurements are acquired in pairs which are then averaged. The sensor is randomly positioned over the canopy for the first measurement of the pair and then a second measurement is acquired either at 15 cm away horizontally or at 0.5 times the row spacing (W) away.

The "on row and off row" sampling scheme assumes that the first measurement is acquired directly over the plants (on row) and the second measurement is acquired halfway between adjacent rows (off row).

Numbers of measurements greater than 100 are omitted for clarity,

are mounted in the same radiometer, the number of measurements required for an experiment should be based on the larger of the two estimates; i.e., the red band.

Changes in the proportions of soil and crop in the FOV also change the number of measurement required. Fewer measurements are required to characterize the reflectance of a soybean canopy with 100% soil cover than for a soybean canopy with distinct rows and only 71% soil cover. Canopies with foliage in distinct, well-formed rows and equal proportions of sunlit soil/sunlit vegetation and shaded soil/shaded vegetation measured at the lowest sensor altitude would have the greatest variation in reflectance across the rows and should require the largest number of measurements to detect any specified differences in the canopy reflectance factor in the red spectral region. She number of measurements required to estimate with a specified precision the true reflectance of a canopy with rows can be expected to increase from planting until 50% soil cover and then decrease as the proportion of vegetation in the scene increases. The magnitude of this change in number of measurements with crop development should be a function of the relative differences in reflectance factor of sunlit and shaded soil and Tre greater the contrast among these components, greater the increase in number of reflectance measurements required as the crop grows.

As a researcher continues to plan his experiments, he soon asks which sampling scheme is most efficient, i.e., requires the fewest number of measurements per plot? Of the four sampling schemes evaluated in this paper, the second scheme using the means of pairs of measurements acquired at 15-cm intervals was least efficient. The reductions in CVs associated with averaging pairs of measurements (Figures 4, 5, and 6) were not sufficient to decrease the total number of measurements to less than required by simple random sampling using individual measurements (Table 3).

The two stratified or systematic sampling schemes based on a knowledge of the row spacing in the crop canopy were more efficient, especially at low altitudes, than the simple random sampling. As sensor altitude increased, efficiencies due to statified sampling decreased until, in some cases, statified sampling at half row spacings slightly increased the total number of measurements. Some of the decreased efficiency with stratified sampling schemes was caused by rounding up all fractions of a measurement pair to the next whole number.

SUMMARY AND CONCLUSIONS

This experiment measured variation in reflectance factor of three crop canopies as functions of horizontal distance across rows and vertical distance above the soil. At low altitudes, variations in reflectances as the sensor moved across the canopy were attributable to row effects which disappeared as the sensor altitude above the canopy increased and the sensor integrated across several rows. Coefficients of variation of reflectance decreased exponentially as the sensor altitude increased. Sampling schemes employing a priori knowledge of the canopy row spacing were more efficient (required fewer measurements for a given level of precision) than simple random sampling schemes.

While this experiment cannot provide answers to the number of measurements required for every experiment, it does emphasize that extreme care must be exercised it analyzing and interpreting data acquired at sensor altitudes where the diameter of the sensor's FOV at the top of the canopy is smaller than several multiples of the row spacing. Researchers employing portable ground-based sensors are encouraged to include in the descriptions of their experiments the following information: sensor altitude above soil, crop height, row spacing, diameter of FOV at soil surface, number of measurements per plot, sampling scheme employed, and within plot variances. This information will greatly assist other scientists trying to interpret and use what appears to be conflicting field research data.

ACKNOWLEDGEMENTS

The authors appreciate the assistance of B.F. Robinson and L.L. Biehl in acquiring and preprocessing the data.

REFERENCES

- 1. Asse, J.K., and F.H. Siddoway. 1980. Determining winter wheat stand densities using spectral reflectance measurements. Agron. J. 72:149-152.
- 2. Cochran, W.G. and G.M. Cox. 1957. Experimental Designs. pp. 15-29. John Wiley. New York.
- 3. Daughtry, C.S.T., M.E. Bauer, D.W. Crecelius, and M.M. Hixson. 1980. Effects of management practices on reflectance of spring wheat canopies. Agron J. 72:1055-1060.
- 4. Fehr, W.R., C.E. Caviness, D.T. Burmood, and J.S. Pennington. 1971. Stage of development descriptions for soybeans, <u>Glycine max</u> (L.) Merrill. Crop Sci. 11:929-931.
- 5. Hanway, J.J. 1963. Growth stages of corn (Zea Mays L). Agron. J. 55:487-492.
- 6. Hinzman, L.D., M.E. Bauer, and C.S.T. Daughtry. 1981. Influence of nitrogen fertilization and leaf rust on the reflectance characteristics of winter wheat canopies. Tech. Report 062081. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, IN 47906.
- 7. Holben, B.N., C.J. Tucker, and C. Fan. 1980. Spectralassessment of soybean leaf area and leaf biomass. Photogrammetric Engineering and Remote Sensing 46:651-656.
- 8. Jackson, R.D., P.J. Pinter, Jr., R.J. Reginato, and S.B. Idso. 1980. Hand-held radiometry. USDA-SEA. Agricultural Reviews and Manuals, ARM-W-19, 66 p.
- 9. Kimes, D.S., B.L. Markham, C.J. Tucker, and J.E. McMurtrey III. 1981. Temporal relationships between spectral response and agronomic variables of a corn canopy. Remote Sensing Environment (In Press).
- 10. Kollenkark, J.C., C.S.T. Daughtry, and M.E. Bauer, 1981. Influence of cultural practices on the reflectance characteristics of soybean canopies. Tech. Report 021781. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, IN.
- 11. Nash, L.M., C.S.T. Daughtry, and M.E. Bauer. 1981. Effects of cultural practices on spectral properties of maize canopies. Tech Report 102081. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, IN 47906.

- 12. Pinter, P.J., Jr., R.D. Jackson, S.B. Idso, and R.J. Reginato. 1981. Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. Int. J. Remote Sensing 2:43-48.
- 13. Robinson, B.F. and L.L. Biehl. 1979. Calibration procedures for measurement of reflectance factor in remote sensing field research. 196:16-26. Proc. Soc. Photo-Optical Instrumentation Engr. 23rd Annual Tech. Symp. on Measurement of Optical Radiation. Bellingham, WA.
- 14. Tsuchida, R. 1981. Design and evaluation of a pick-up truck mounted boom for elevation of a multiband radiometer system. Tech. Report 040981. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, IN.
- 15. Tucker, C.J., J.H. Elgin, Jr., J.E. McMurtrey III, C.J. Fan. 1979. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing Environment 8:237-248.
- 16. Tucker, C.J., B.N. Holben, J.H. Elgin, Jr. and J.E. McMurtrey III.1 981. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sensing Environment. 11:171-189.
- 17. Walburg, G., M.E. Bauer and C.S.T. Daughtry. 1981. Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canpoies. Tech. Report 033181. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, IN.