28 research outputs found

    Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.

    Get PDF
    Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity

    Autoantibodies against type I IFNs in patients with critical influenza pneumonia

    Full text link
    In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old

    Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion

    Get PDF
    Purpose: Invasive pulmonary aspergillosis is increasingly reported in patients with influenza admitted to the intensive care unit (ICU). Classification of patients with influenza-associated pulmonary aspergillosis (IAPA) using the current definitions for invasive fungal diseases has proven difficult, and our aim was to develop case definitions for IAPA that can facilitate clinical studies. Methods: A group of 29 international experts reviewed current insights into the epidemiology, diagnosis and management of IAPA and proposed a case definition of IAPA through a process of informal consensus. Results: Since IAPA may develop in a wide range of hosts, an entry criterion was proposed and not host factors. The entry criterion was defined as a patient requiring ICU admission for respiratory distress with a positive influenza test temporally related to ICU admission. In addition, proven IAPA required histological evidence of invasive septate hyphae and mycological evidence for Aspergillus. Probable IAPA required the detection of galactomannan or positive Aspergillus culture in bronchoalveolar lavage (BAL) or serum with pulmonary infiltrates or a positive culture in upper respiratory samples with bronchoscopic evidence for tracheobronchitis or cavitating pulmonary infiltrates of recent onset. The IAPA case definitions may be useful to classify patients with COVID-19-associated pulmonary aspergillosis (CAPA), while awaiting further studies that provide more insight into the interaction between Aspergillus and the SARS-CoV-2-infected lung. Conclusion: A consensus case definition of IAPA is proposed, which will facilitate research into the epidemiology, diagnosis and management of this emerging acute and severe Aspergillus disease, and may be of use to study CAPA

    Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment

    No full text
    Item does not contain fulltextPURPOSE OF REVIEW: Bacterial super-infection of critically ill influenza patients is well known, but in recent years, more and more reports describe invasive aspergillosis as a frequent complication as well. This review summarizes the available literature on the association of invasive pulmonary aspergillosis (IPA) with severe influenza [influenza-associated aspergillosis (IAA)], including epidemiology, diagnostic approaches and treatment options. RECENT FINDINGS: Though IPA typically develops in immunodeficient patients, non-classically immunocompromised patients such as critically ill influenza patients are at high-risk for IPA as well. The morbidity and mortality of IPA in these patients is high, and in the majority of them, the onset occurs early after ICU admission. At present, standard of care (SOC) consists of close follow-up of these critically ill influenza patients with high diagnostic awareness for IPA. As soon as there is clinical, mycological or radiological suspicion for IAA, antifungal azole-based therapy (e.g. voriconazole) is initiated, in combination with therapeutic drug monitoring (TDM). Antifungal treatment regimens should reflect local epidemiology of azole-resistant Aspergillus species and should be adjusted to clinical evolution. TDM is necessary as azoles like voriconazole are characterized by nonlinear pharmacokinetics, especially in critically ill patients. SUMMARY: In light of the frequency, morbidity and mortality associated with influenza-associated aspergillosis in the ICU, a high awareness of the diagnosis and prompt initiation of antifungal therapy is required. Further studies are needed to evaluate the incidence of IAA in a prospective multicentric manner, to elucidate contributing host-derived factors to the pathogenesis of this super-infection, to further delineate the population at risk, and to identify the preferred diagnostic and management strategy, and also the role of prophylaxis

    Longitudinal multimodal imaging-compatible mouse model of triazole-sensitive and -resistant invasive pulmonary aspergillosis

    Get PDF
    This is the final version. Available on open access from the Company of Biologists via the DOI in this recordData availability: Codon-optimized, red-shifted thermostable firefly luciferase sequence: lucOPT_red_TS, GenScript; GenBank accession number: MT554554.Invasive pulmonary aspergillosis (IPA) caused by the mold Aspergillus fumigatus is one of the most important life-threatening infections in immunocompromised patients. The alarming increase of isolates resistant to the first-line recommended antifungal therapy urges more insights into triazole-resistant A. fumigatus infections. In this study, we systematically optimized a longitudinal multimodal imaging-compatible neutropenic mouse model of IPA. Reproducible rates of pulmonary infection were achieved through immunosuppression (sustained neutropenia) with 150 mg/kg cyclophosphamide at day -4, -1 and 2, and an orotracheal inoculation route in both sexes. Furthermore, increased sensitivity of in vivo bioluminescence imaging for fungal burden detection, as early as the day after infection, was achieved by optimizing luciferin dosing and through engineering isogenic red-shifted bioluminescent A. fumigatus strains, one wild type and two triazole-resistant mutants. We successfully tested appropriate and inappropriate antifungal treatment scenarios in vivo with our optimized multimodal imaging strategy, according to the in vitro susceptibility of our luminescent fungal strains. Therefore, we provide novel essential mouse models with sensitive imaging tools for investigating IPA development and therapy in triazole-susceptible and triazole-resistant scenarios.Fonds Wetenschappelijk Onderzoek (FWO)KU LeuvenMedical Research Council (MRC)University of Nottingha

    COVID-19-associated invasive pulmonary aspergillosis

    No full text

    Exposure to intravenous posaconazole in critically ill patients with influenza: A pharmacokinetic analysis of the POSA-FLU study

    No full text
    BACKGROUND: Data on posaconazole in the critically ill are scarce. In the POSA-FLU study, we examined the prevention of influenza-associated pulmonary aspergillosis with posaconazole in this population. METHODS: In this observational sub-study, we performed a pharmacokinetic analysis, including protein binding and target attainment (TA). Blood samples were collected over a 24 h-dosing interval on both an early (Day 2 or 3) and a later (≥Day 4) treatment day. RESULTS: Target attainment was shown for AUC(0-24) and C(min) prophylaxis but not for C(min) treatment. Moreover, a saturable protein binding with a significant, positive relationship between albumin concentrations and the maximum binding capacity was observed. CONCLUSIONS: Our analysis indicates that posaconazole may be a suitable drug to further investigate for prophylaxis, as TA for prophylaxis was reached. Exposure targets for treatment were insufficiently attained in this population

    Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion.

    Get PDF
    Invasive pulmonary aspergillosis is increasingly reported in patients with influenza admitted to the intensive care unit (ICU). Classification of patients with influenza-associated pulmonary aspergillosis (IAPA) using the current definitions for invasive fungal diseases has proven difficult, and our aim was to develop case definitions for IAPA that can facilitate clinical studies. A group of 29 international experts reviewed current insights into the epidemiology, diagnosis and management of IAPA and proposed a case definition of IAPA through a process of informal consensus. Since IAPA may develop in a wide range of hosts, an entry criterion was proposed and not host factors. The entry criterion was defined as a patient requiring ICU admission for respiratory distress with a positive influenza test temporally related to ICU admission. In addition, proven IAPA required histological evidence of invasive septate hyphae and mycological evidence for Aspergillus. Probable IAPA required the detection of galactomannan or positive Aspergillus culture in bronchoalveolar lavage (BAL) or serum with pulmonary infiltrates or a positive culture in upper respiratory samples with bronchoscopic evidence for tracheobronchitis or cavitating pulmonary infiltrates of recent onset. The IAPA case definitions may be useful to classify patients with COVID-19-associated pulmonary aspergillosis (CAPA), while awaiting further studies that provide more insight into the interaction between Aspergillus and the SARS-CoV-2-infected lung. A consensus case definition of IAPA is proposed, which will facilitate research into the epidemiology, diagnosis and management of this emerging acute and severe Aspergillus disease, and may be of use to study CAPA

    High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients

    No full text
    The COVID-19 pandemic poses a major burden on healthcare and economic systems across the globe. Even though a majority of the population develops only minor symptoms upon SARS-CoV-2 infection, a significant number are hospitalized at intensive care units (ICU) requiring critical care. While insights into the early stages of the disease are rapidly expanding, the dynamic immunological processes occurring in critically ill patients throughout their recovery at ICU are far less understood. Here, we have analysed whole blood samples serially collected from 40 surviving COVID-19 patients throughout their recovery in ICU using high-dimensional cytometry by time-of-flight (CyTOF) and cytokine multiplexing. Based on the neutrophil-to-lymphocyte ratio (NLR), we defined four sequential immunotypes during recovery that correlated to various clinical parameters, including the level of respiratory support at concomitant sampling times. We identified classical monocytes as the first immune cell type to recover by restoration of HLA-DR-positivity and the reduction of immunosuppressive CD163 + monocytes, followed by the recovery of CD8 + and CD4 + T cell and non-classical monocyte populations. The identified immunotypes also correlated to aberrant cytokine and acute-phase reactant levels. Finally, integrative analysis of cytokines and immune cell profiles showed a shift from an initially dysregulated immune response to a more coordinated immunogenic interplay, highlighting the importance of longitudinal sampling to understand the pathophysiology underlying recovery from severe COVID-19
    corecore