24 research outputs found

    Establishing seasonal and alert influenza thresholds in Cambodia using the WHO method: implications for effective utilization of influenza surveillance in the tropics and subtropics

    Get PDF
    Objective: To establish seasonal and alert thresholds and transmission intensity categories for influenza to provide timely triggers for preventive measures or upscaling control measures in Cambodia. Methods: Using Cambodia's influenza-like illness (ILI) and laboratory-confirmed influenza surveillance data from 2009 to 2015, three parameters were assessed to monitor influenza activity: the proportion of ILI patients among all outpatients, proportion of ILI samples positive for influenza and the product of the two. With these parameters, four threshold levels (seasonal, moderate, high and alert) were established and transmission intensity was categorized based on a World Health Organization alignment method. Parameters were compared against their respective thresholds. Results: Distinct seasonality was observed using the two parameters that incorporated laboratory data. Thresholds established using the composite parameter, combining syndromic and laboratory data, had the least number of false alarms in declaring season onset and were most useful in monitoring intensity. Unlike in temperate regions, the syndromic parameter was less useful in monitoring influenza activity or for setting thresholds. Conclusion: Influenza thresholds based on appropriate parameters have the potential to provide timely triggers for public health measures in a tropical country where monitoring and assessing influenza activity has been challenging. Based on these findings, the Ministry of Health plans to raise general awareness regarding influenza among the medical community and the general public. Our findings have important implications for countries in the tropics/subtropics and in resource-limited settings, and categorized transmission intensity can be used to assess severity of potential pandemic influenza as well as seasonal influenza

    Key challenges for the surveillance of respiratory viruses: transitioning out of the acute phase of the SARS-CoV-2 pandemic

    Full text link
    To support the ongoing management of viral respiratory diseases, many countries are moving towards an integrated model of surveillance for SARS-CoV-2, influenza, and other respiratory pathogens. While many surveillance approaches catalysed by the COVID-19 pandemic provide novel epidemiological insight, continuing them as implemented during the pandemic is unlikely to be feasible for non-emergency surveillance, and many have already been scaled back. Furthermore, given anticipated co-circulation of SARS-CoV-2 and influenza, surveillance activities in place prior to the pandemic require review and adjustment to ensure their ongoing value for public health. In this perspective, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies, their contribution to epidemiological assessment, forecasting, and public health decision making

    Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021.

    Get PDF
    We present a global analysis of the spread of recently emerged SARS-CoV-2 variants and estimate changes in effective reproduction numbers at country-specific level using sequence data from GISAID. Nearly all investigated countries demonstrated rapid replacement of previously circulating lineages by the World Health Organization-designated variants of concern, with estimated transmissibility increases of 29% (95% CI: 24-33), 25% (95% CI: 20-30), 38% (95% CI: 29-48) and 97% (95% CI: 76-117), respectively, for B.1.1.7, B.1.351, P.1 and B.1.617.2

    Early insights from statistical and mathematical modeling of key epidemiologic parameters of COVID-19

    Get PDF
    We report key epidemiologic parameter estimates for coronavirus disease identified in peer-reviewed publications, preprint articles, and online reports. Range estimates for incubation period were 1.8–6.9 days, serial interval 4.0–7.5 days, and doubling time 2.3–7.4 days. The effective reproductive number varied widely, with reductions attributable to interventions. Case burden and infection fatality ratios increased with patient age. Implementation of combined interventions could reduce cases and delay epidemic peak up to 1 month. These parameters for transmission, disease severity, and intervention effectiveness are critical for guiding policy decisions. Estimates will likely change as new information becomes available

    Coordinating the real‐time use of global influenza activity data for better public health planning

    Get PDF
    Health planners from global to local levels must anticipate year‐to‐year and week‐to‐week variation in seasonal influenza activity when planning for and responding to epidemics to mitigate their impact. To help with this, countries routinely collect incidence of mild and severe respiratory illness and virologic data on circulating subtypes and use these data for situational awareness, burden of disease estimates and severity assessments. Advanced analytics and modelling are increasingly used to aid planning and response activities by describing key features of influenza activity for a given location and generating forecasts that can be translated to useful actions such as enhanced risk communications, and informing clinical supply chains. Here, we describe the formation of the Influenza Incidence Analytics Group (IIAG), a coordinated global effort to apply advanced analytics and modelling to public influenza data, both epidemiological and virologic, in real‐time and thus provide additional insights to countries who provide routine surveillance data to WHO. Our objectives are to systematically increase the value of data to health planners by applying advanced analytics and forecasting and for results to be immediately reproducible and deployable using an open repository of data and code. We expect the resources we develop and the associated community to provide an attractive option for the open analysis of key epidemiological data during seasonal epidemics and the early stages of an influenza pandemic

    Revision of clinical case definitions: influenza-like illness and severe acute respiratory infection

    Get PDF
    Abstract in English, Arabic, Chinese, French, Russian, SpanishThe formulation of accurate clinical case definitions is an integral part of an effective process of public health surveillance. Although such definitions should, ideally, be based on a standardized and fixed collection of defining criteria, they often require revision to reflect new knowledge of the condition involved and improvements in diagnostic testing. Optimal case definitions also need to have a balance of sensitivity and specificity that reflects their intended use. After the 2009-2010 H1N1 influenza pandemic, the World Health Organization (WHO) initiated a technical consultation on global influenza surveillance. This prompted improvements in the sensitivity and specificity of the case definition for influenza - i.e. a respiratory disease that lacks uniquely defining symptomology. The revision process not only modified the definition of influenza-like illness, to include a simplified list of the criteria shown to be most predictive of influenza infection, but also clarified the language used for the definition, to enhance interpretability. To capture severe cases of influenza that required hospitalization, a new case definition was also developed for severe acute respiratory infection in all age groups. The new definitions have been found to capture more cases without compromising specificity. Despite the challenge still posed in the clinical separation of influenza from other respiratory infections, the global use of the new WHO case definitions should help determine global trends in the characteristics and transmission of influenza viruses and the associated disease burden.info:eu-repo/semantics/publishedVersio

    Timing of seasonal influenza epidemics for 25 countries in Africa during 2010-19: a retrospective analysis.

    Get PDF
    BACKGROUND: Using country-specific surveillance data to describe influenza epidemic activity could inform decisions on the timing of influenza vaccination. We analysed surveillance data from African countries to characterise the timing of seasonal influenza epidemics to inform national vaccination strategies. METHODS: We used publicly available sentinel data from African countries reporting to the WHO Global Influenza Surveillance and Response FluNet platform that had 3-10 years of data collected during 2010-19. We calculated a 3-week moving proportion of samples positive for influenza virus and assessed epidemic timing using an aggregate average method. The start and end of each epidemic were defined as the first week when the proportion of positive samples exceeded or went below the annual mean, respectively, for at least 3 consecutive weeks. We categorised countries into five epidemic patterns: northern hemisphere-dominant, with epidemics occurring in October-March; southern hemisphere-dominant, with epidemics occurring in April-September; primarily northern hemisphere with some epidemic activity in southern hemisphere months; primarily southern hemisphere with some epidemic activity in northern hemisphere months; and year-round influenza transmission without a discernible northern hemisphere or southern hemisphere predominance (no clear pattern). FINDINGS: Of the 34 countries reporting data to FluNet, 25 had at least 3 years of data, representing 46% of the countries in Africa and 89% of Africa's population. Study countries reported RT-PCR respiratory virus results for a total of 503 609 specimens (median 12 971 [IQR 9607-20 960] per country-year), of which 74 001 (15%; median 2078 [IQR 1087-3008] per country-year) were positive for influenza viruses. 248 epidemics occurred across 236 country-years of data (median 10 [range 7-10] per country). Six (24%) countries had a northern hemisphere pattern (Algeria, Burkina Faso, Egypt, Morocco, Niger, and Tunisia). Eight (32%) had a primarily northern hemisphere pattern with some southern hemisphere epidemics (Cameroon, Ethiopia, Mali, Mozambique, Nigeria, Senegal, Tanzania, and Togo). Three (12%) had a primarily southern hemisphere pattern with some northern hemisphere epidemics (Ghana, Kenya, and Uganda). Three (12%) had a southern hemisphere pattern (Central African Republic, South Africa, and Zambia). Five (20%) had no clear pattern (Cîte d'Ivoire, DR Congo, Madagascar, Mauritius, and Rwanda). INTERPRETATION: Most countries had identifiable influenza epidemic periods that could be used to inform authorities of non-seasonal and seasonal influenza activity, guide vaccine timing, and promote timely interventions. FUNDING: None. TRANSLATIONS: For the Berber, Luganda, Xhosa, Chewa, Yoruba, Igbo, Hausa and Afan Oromo translations of the abstract see Supplementary Materials section

    Establishing seasonal and alert influenza thresholds in Cambodia using the WHO method: implications for effective utilization of influenza surveillance in the tropics and subtropics

    No full text
    Objective: To establish seasonal and alert thresholds and transmission intensity categories for influenza to provide timely triggers for preventive measures or upscaling control measures in Cambodia. Methods: Using Cambodia's influenza-like illness (ILI) and laboratory-confirmed influenza surveillance data from 2009 to 2015, three parameters were assessed to monitor influenza activity: the proportion of ILI patients among all outpatients, proportion of ILI samples positive for influenza and the product of the two. With these parameters, four threshold levels (seasonal, moderate, high and alert) were established and transmission intensity was categorized based on a World Health Organization alignment method. Parameters were compared against their respective thresholds. Results: Distinct seasonality was observed using the two parameters that incorporated laboratory data. Thresholds established using the composite parameter, combining syndromic and laboratory data, had the least number of false alarms in declaring season onset and were most useful in monitoring intensity. Unlike in temperate regions, the syndromic parameter was less useful in monitoring influenza activity or for setting thresholds. Conclusion: Influenza thresholds based on appropriate parameters have the potential to provide timely triggers for public health measures in a tropical country where monitoring and assessing influenza activity has been challenging. Based on these findings, the Ministry of Health plans to raise general awareness regarding influenza among the medical community and the general public. Our findings have important implications for countries in the tropics/subtropics and in resource-limited settings, and categorized transmission intensity can be used to assess severity of potential pandemic influenza as well as seasonal influenza
    corecore