559 research outputs found

    Differences in the nonverbal requests of Great Apes and human infants

    No full text
    This study investigated how great apes and human infants use imperative pointing to request objects. In a series of three experiments (infants, N = 44; apes, N = 12), subjects were given the opportunity to either point to a desired object from a distance or else to approach closer and request it proximally. The apes always approached close to the object, signaling their request through instrumental actions. In contrast, the infants quite often stayed at a distance, directing the experimenters' attention to the desired object through index-finger pointing, even when the object was in the open and they could obtain it by themselves. Findings distinguish 12-month-olds' imperative pointing from ontogenetic and phylogenetic earlier forms of ritualized reaching

    Pathogens, toxins, and lipid rafts

    Get PDF
    Summary: The plasma membrane is not a uniform two-dimensional space but includes various types of specialized regions containing specific lipids and proteins. These include clathrin-coated pits and caveolae. The existence of other cholesterol- and glycosphingolipid-rich microdomains has also been proposed. The aim of this review is to illustrate that these latter domains, also called lipid rafts, may be the preferential interaction sites between a variety of toxins, bacteria, and viruses and the target cell. These pathogens and toxins have hijacked components that are preferentially found in rafts, such as glycosylphosphatidylinositol-anchored proteins, sphingomyelin, and cholesterol. These molecules not only allow binding of the pathogen or toxin to the proper target cell but also appear to potentiate the toxic action. We briefly review the structure and proposed functions of cholesterol- and glycosphingolipid-rich microdomains and then describe the toxins and pathogens that interact with them. When possible the advantage conferred by the interaction with microdomains will be discusse

    Bacterial pore-forming toxins: The (w)hole story?

    Get PDF
    Abstract.: Pore-forming toxins (PFTs) are the most common class of bacterial protein toxins and constitute important bacterial virulence factors. The mode of action of PFT is starting to be better understood. In contrast, little is known about the cellular response to this threat. Recent studies reveal that cells do not just swell and lyse, but are able to sense and react to pore formation, mount a defense, even repair the damaged membrane and thus survive. These responses involve a variety of signal-transduction pathways and sophisticated cellular mechanisms such as the pathway regulating lipid metabolism. In this review we discuss the different classes of bacterial PFTs and their modes of action, and provide examples of how the different bacteria use PFTs. Finally, we address the more recent field dealing with the eukaryotic cell response to PFT-induced damag

    Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training

    Get PDF
    Representational spaces learned via language modeling are fundamental to Natural Language Processing (NLP), however there has been limited understanding regarding how and when during training various types of linguistic information emerge and interact. Leveraging a novel information theoretic probing suite, which enables direct comparisons of not just task performance, but their representational subspaces, we analyze nine tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds. We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize. Across these phases, syntactic knowledge is acquired rapidly after 0.5% of full training. Continued performance improvements primarily stem from the acquisition of open-domain knowledge, while semantics and reasoning tasks benefit from later boosts to long-range contextualization and higher specialization. Measuring cross-task similarity further reveals that linguistically related tasks share information throughout training, and do so more during the critical phase of learning than before or after. Our findings have implications for model interpretability, multi-task learning, and learning from limited data.</p

    Bedrijfsgebonden dierziekten op varkens-, rundvee- en pluimveebedrijven

    Get PDF
    In deze rapportage is een inventarisatie en prioritering van bedrijfsgebonden aandoeningen in de rundvee- varkens- en pluimveesector uitgewerkt. Deze kunnen de overheid en veehouderijsectoren een handvat geven voor een nadere invulling van haar Nationale Agenda Diergezondheid en behulpzaam zijn bij het formuleren van additioneel beleid. Bovendien geven ze aanwijzingen waar met nieuwe inspanningen winst kan worden geboekt bij bedrijfsgebonden diergezondheidsproblemen

    Long-term dietary intervention with low Phe and/or a specific nutrient combination improve certain aspects of brain functioning in phenylketonuria (PKU)

    Get PDF
    Introduction In phenylketonuria (PKU), a gene mutation in the phenylalanine metabolic pathway causes accumulation of phenylalanine (Phe) in blood and brain. Although early introduction of a Phe-restricted diet can prevent severe symptoms from developing, patients who are diagnosed and treated early still experience deficits in cognitive functioning indicating shortcomings of current treatment. In the search for new and/or additional treatment strategies, a specific nutrient combination (SNC) was postulated to improve brain function in PKU. In this study, a long-term dietary intervention with a low-Phe diet, a specific combination of nutrients designed to improve brain function, or both concepts together was investigated in male and female BTBR PKU and WT mice. Material & methods 48 homozygous wild-types (WT, +/+) and 96 PKU BTBRPah2 (-/-) male and female mice received dietary interventions from postnatal day 31 till 10 months of age and were distributed in the following six groups: high Phe diet (WT C-HP, PKU C-HP), high Phe plus specific nutrient combination (WT SNC-HP, PKU SNC-HP), PKU low-Phe diet (PKU C-LP), and PKU low-Phe diet plus specific nutrient combination (PKU SNC- LP). Memory and motor function were tested at time points 3, 6, and 9 months after treatment initiation in the open field (OF), novel object recognition test (NOR), spatial object recognition test (SOR), and the balance beam (BB). At the end of the experiments, brain neurotransmitter concentrations were determined. Results In the NOR, we found that PKU mice, despite being subjected to high Phe conditions, could master the task on all three time points when supplemented with SNC. Under low Phe conditions, PKU mice on control diet could master the NOR at all three time points, while PKU mice on the SNC supplemented diet could master the task at time points 6 and 9 months. SNC supplementation did not consistently influence the performance in the OF, SOR or BB in PKU mice. The low Phe diet was able to normalize concentrations of norepinephrine and serotonin; however, these neurotransmitters were not influenced by SNC supplementation. Conclusion This study demonstrates that both a long-lasting low Phe diet, the diet enriched with SNC, as well as the combined diet was able to ameliorate some, but not all of these PKU-induced abnormalities. Specifically, this study is the first long-term intervention study in BTBR PKU mice that shows that SNC supplementation can specifically improve novel object recognition

    Dual chaperone role of the c-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin

    Get PDF
    Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function
    • …
    corecore