85 research outputs found

    A Review of the Associations of Alcohol Consumption with Race/Ethnicity, Religion, and Socioeconomic Status

    Get PDF
    This literature review explores the relationship between alcohol use and different demographic variables, specifically race/ethnicity, religion, and socioeconomic status. The aims of the paper are: 1) define alcohol use and discuss the physical and mental health implications of alcohol use and 2) explore the associations of alcohol use with religiosity, race/ethnicity, and socioeconomic status. Thirty four articles that directly address the correlates of race/ethnicity, religion, SES, health, and alcohol consumption were reviewed after extensive literature search. Studies indicate that religious individuals consume less alcohol than non-religious individuals. European Americans and Native Americans have the highest rates of alcohol consumption. Socioeconomic status proves to be the most inconsistent of the demographic variables studied; results vary about the effects of socioeconomic status on alcohol use. Gaps in current literature, the need for consistency in vocabulary, and focus for future studies are discussed

    MYRRHA: A multipurpose nuclear research facility

    Get PDF
    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented

    Review of the C-nat(n,gamma) cross section and criticality calculations of the graphite moderated reactor BR1

    Full text link
    A review of the experimental data for natC(n,c) and 12C(n,c) was made to identify the origin of the natC capture cross sections included in evaluated data libraries and to clarify differences observed in neutronic calculations for graphite moderated reactors using different libraries. The performance of the JEFF-3.1.2 and ENDF/B-VII.1 libraries was verified by comparing results of criticality calculations with experimental results obtained for the BR1 reactor. This reactor is an air-cooled reactor with graphite as moderator and is located at the Belgian Nuclear Research Centre SCK-CEN in Mol (Belgium). The results of this study confirm conclusions drawn from neutronic calculations of the High Temperature Engineering Test Reactor (HTTR) in Japan. Furthermore, both BR1 and HTTR calculations support the capture cross section of 12C at thermal energy which is recommended by Firestone and Révay. Additional criticality calculations were carried out in order to illustrate that the natC thermal capture cross section is important for systems with a large amount of graphite. The present study shows that only the evaluation carried out for JENDL-4.0 reflects the current status of the experimental data

    Analysis of 238Pu and 56Fe Evaluated Data for Use in MYRRHA

    Full text link
    A sensitivity analysis on the multiplication factor, keffkeff, to the cross section data has been carried out for the MYRRHA critical configuration in order to show the most relevant reactions. With these results, a further analysis on the 238Pu and 56Fe cross sections has been performed, comparing the evaluations provided in the JEFF-3.1.2 and ENDF/B-VII.1 libraries for these nuclides. Then, the effect in MYRRHA of the differences between evaluations are analysed, presenting the source of the differences. With these results, recommendations for the 56Fe and 238Pu evaluations are suggested. These calculations have been performed with SCALE6.1 and MCNPX-2.7e

    Neutron transport with anisotropic scattering: theory and applications

    No full text
    This thesis is a blend of neutron transport theory and numerical analysis. We start with the study of the problem of the Mika/Case eigenexpansion used in the solution process of the homogeneous one-speed Boltzmann neutron transport equation with anisotropic scattering for plane symmetry. The anisotropic scattering is expressed as a finite Legendre series in which the coefficients are the ``scattering coefficients'. This eigenexpansion consists of a discrete spectrum of eigenvalues with its corresponding eigenfunctions and the continuous spectrum [-1,+1] with its corresponding eigendistributions. In the general case where the anisotropic scattering can be of any (finite) order, multiple discrete eigenvalues exist and these have to be located to have the complete spectrum. We have devised a stable and robust method that locates all these discrete eigenvalues. The method is a two-step process: first the number of discrete eigenvalues is calculated and this is followed by the calculation of the discrete eigenvalues themselves, now being able to count them down and make sure none are forgotten. During our numerical experiments, we came across what we called near-singular eigenvalues: discrete eigenvalues that are located extremely close to the continuum and hence lead to near-singular behaviour in the eigenfunction. Our solution method has been adapted and allows for the automatic detection of such a near-singular eigenvalue. For the elements of the continuous spectrum [-1,+1], there is no non-zero function satisfying the associated eigenequation but there is a non-zero distribution that does satisfy it. It is not feasible to compute a distribution as such but one can evaluate integrals in which this distribution appears. The continuum part of the eigenexpansion can hence only be characterised by its (angular) moments. Accurate and fast numerical quadrature is needed to evaluate these integrals. Several quadrature methods have been evaluated on a representative test function. The eigenexpansion was proved to be orthogonal and complete and hence can be used to represent the infinite medium Green's function. The latter is the building block of the Boundary Sources Method, an integral solution method for the neutron transport equation. Using angular and angular/spatial moments of the Green's function, it is possible to solve with high accuracy slab problems. We have written a one-dimensional slab code implementing this Boundary Sources Method allowing for media with arbitrary order anisotropic scattering. Our results are very good and the code can be considered as a benchmark code for others. As a final application, we have used our code to study the discrete spectrum of a well-known scattering kernel in radiative transfer, the Henyey-Greenstein kernel. This kernel has one free parameter which is used to fit the kernel to experimental data. Since the kernel is a continuous function, a finite Legendre approximation needs to be adopted. Depending on the free parameter, the approximation order and the number of secondaries per collision, the number of discrete eigenvalues ranges from two to thirty and even more. Bounds for the minimum approximation order are derived for different requirements on the approximation: non-negativity, an absolute and relative error tolerance. Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe
    corecore