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Abstract. To reduce the computational cost of high-fidelity simulations, model reduction
techniques have been developed to approximate parametrized Partial Differential Equa-
tions (PDEs) for Computational Fluid Dynamics (CFD) problems. Typically, a Galerkin
projection is performed to obtain a reduced order model (ROM). In that case, the govern-
ing equations are projected onto the reduced basis space generated by applying a Proper
Orthogonal Decomposition (POD) approach on snapshots of the full order simulation. The
main issue of this method is its intrusiveness: the construction of the reduced matrices
requires access to the full order matrices and thus knowledge of the solvers discretization
and solution algorithm. Therefore, a non-intrusive reduced-order method for parametric
CFD problems is proposed in this work, which is applicable regardless of the solver. This
POD-based identification (PODI) method identifies reduced matrices of the same form as
in the POD-Galerkin method using the least-squares technique. This identification uses
the set of known time-dependent coefficients obtained by projecting all snapshots on the
POD basis in the offline phase. Parameterization of the reduced system requires full order
simulations for different parameter values. The resulting reduced system of equations is
then solved online for a given set of parameters. The offline-online decomposition of the
POD-Galerkin method is thus maintained. To demonstrate the proposed method, numer-
ical results are presented for the convection-diffusion equation, using the finite volume
method. The results are compared with the POD-Galerkin method and the benefits and
limitations of the presented method are discussed. As the reduced basis is the same for
the PODI method and the POD-Galerkin method, also the reduced matrices obtained
through respectively identification and projection can be compared.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) simulations are widely used in industry to solve
fluid problems. Commercial and open-source codes such as ANSYS Fluent and Open-
FOAM, respectively, use the Finite Volume Method (FVM) for the spatial discretization
of the governing equations that describe the physical model [1, 2]. These high-fidelity
simulations can contain millions of degrees of freedom and are therefore computation-
ally expensive. Model reduction techniques have been developed to approximate the
(parametrized) Partial Differential Equations (PDEs) to reduce the CPU time and com-
puter memory usage.

Different types of reduction techniques for fluid problems can be found in literature. A
family of techniques are those based on a reduced basis where a low dimensional subspace,
containing the essential dynamics of the full order system, is constructed. The Proper
Orthogonal Decomposition (POD) is the most often used method in fluid dynamics liter-
ature as it can be applied to nonlinear models [3]. The full order model (FOM) is sampled
at several points in time to construct the so-called snapshot matrix. Next a reduced basis
space is created through a Singular Value Decomposition (SVD). For unsteady problems
POD is typically combined with the Galerkin projection to obtain a reduced order model
where the full order matrices are projected onto the low-dimensional subspace of POD
modes and the difference with the snapshots are minimized [4]. The main issue of this
method is its intrusiveness because the construction of the reduced matrices requires ac-
cess to the full order matrices and thus knowledge of the solvers discretization. For that
reason projection-based methods cannot be used for commercial solvers as ANSYS Fluent.

To avoid this intrusiveness, data-driven reduction techniques could be used instead,
such as System Identification (SI) where a low-dimensional system is identified to de-
scribe the dynamics of a high-dimensional system. This is a black-box approach where
the problem is treated as a system that processes a set of inputs and yields a set of
outputs. The input/output data is then used to determine a set of low-order ordinary
differential equations (ODEs) that approximately describe the input/output relationship
of the FOM [5]. A disadvantage of this method is that the obtained system does not
have a physical meaning and consistency issues can occur for parameterized problems [6].
Therefore a non-intrusive reduced-order method for parametric CFD problems is proposed
in this work, which is applicable regardless of the solver. This POD-based identification
(PODI) method identifies reduced matrices of the same form as in the POD-Galerkin
method using the least-squares technique. This identification method uses the set of
known time-dependent coefficients obtained by projecting all snapshots on the POD basis
in the offline phase.

2 The Full Order Model

The linear unsteady convection-diffusion equations are used to demonstrate the pro-
posed PODI method. For heat transfer, the general equations are given in a domain Ω
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by
∂T

∂t
+ O · (uT ) = O · (αOT ) +

q̇v
ρcp

(1)

where T is the temperature, α is the thermal diffusivity, ρ is the mass density of the
fluid, cp is the specific heat capacity, u is the flow velocity vector, q̇v is the volumetric
heat source term and t is the time. For simplicity the diffusion coefficient, α, is constant
in time and space and no heat sources or sinks are present. The given velocity field, u,
should satisfy the continuity equation (incompressible flow) O · u = 0. Proper boundary
and initial conditions are applied.

Discretizing in space using the FVM, rearranging in matrix form and parameterizing
the problem leads to the following system of equations where the diffusivity coefficient,
α, and the magnitude of the velocity field, ‖u‖, are the two parameters considered

Ṫ + ‖u‖CT = αDT (2)

where the dot indicates the time derivative and C and D are the convective and diffusive
matrices, respectively.

3 Proper Orthogonal Decomposition

Both reduction methods, the Galerkin projection and the proposed PODI method, are
POD based. Therefore a short description of the POD method is given first in this section.

The POD method is a commonly used basis extraction tool for fluid problems as it is
applicable to both linear and non-linear problems [4]. The main assumption of the POD
method is that there exists an approximation Tr(x, t) to the full order solution T (x, t)
that can be expressed as linear combination of orthogonal spatial modes φi(x) multiplied
by time-dependent coefficients ai(t) [7] as given by

T (x, t) ≈ Tr(x, t) =
Nr∑
i=1

φi(x)ai(t) (3)

where ai are the time-dependent coefficients and Nr is the dimension of the reduced
basis space. The spatial modes φi(x) are determined using a snapshot technique where
a snapshot matrix Y is generated, in this case by numerical simulations, containing a set
of snapshot solutions of T at some selected times tn for n = 0,. . . , Nt

Y = [T (t0), T (t1), . . . , T (tNt)] ∈ RNx×Nt (4)

where Nx is the spatial dimension and the snapshot times tn do not necessarily have to
correspond with the time steps for which the full order solution is calculated. However, the
snapshots do need to capture the entire dynamics of the system within a specified range.
One way to compute the POD modes is by taking the Singular Value Decomposition
(SVD) of the snapshot matrix, Y = UΣV T . The POD modes are given by the columns of
matrix U ∈ RNx×Nx , which is a square matrix of Nx left singular vectors. In addition, these
modes are orthogonal to each other as 〈φi(x), φj(x)〉l2 = δi,j, where 〈·, ·〉l2 is the l2 inner

3



Sabrina Star, Joris Degroote, Jan Vierendeels, Gert Van den Eynde and Francesco Belloni

product over the domain Ω. The matrix V ∈ RNt×Nt is a square matrix of right singular
vectors. The diagonal matrix Σ ∈ RNx×Nt has as entries the singular values of the snapshot
matrix which is a measure of the relative energy of each mode [8]. These singular values
are sorted in descending order, meaning that the first modes contain the most energy.
The decay of the normalized singular values can then be used to retain the first Nr (with
Nr < Nt) left singular vectors of matrix U for the POD modes given a certain tolerance
for the truncation error [9]. The time-dependent coefficients are obtained by projecting
all snapshots on the POD basis functions and the temperature field can be reconstructed
according to equation (3). The l2 error between the FOM and reconstruction can be
computed [9] by

‖e‖l2 =

√
〈(T − Tr), (T − Tr)〉l2

〈T, T 〉l2
(5)

The SVD approach could become more computationally expensive when the dimension of
the grid, used to discretize the domain, is increased (spatial). It is then recommended to
solve an eigenvalue problem using the correlation matrix Ccorr ∈ RNt×Nt of the snapshots
to have no longer a dependency on Nx. For a more detailed explanation the reader is
referred to [8, 9].

4 Reduced Order Modelling methods

In this section the classical Galerkin projection is described shortly and the proposed
PODI method is described in some more detail.

4.1 Galerkin projection

By substituting the approximation equation (3) in the governing equations (2) and
applying a Galerkin projection on the POD basis functions gives the following reduced
order representation of the parameterized system of equations

ȧ = αDra− ‖u‖Cra (6)

where a is a vector containing all temporal coefficients ai(t), Dr is the reduced matrix of
the diffusion term and Cr is the reduced matrix of the convection term with

Dr = ΦTDΦ (7)

Cr = ΦTCΦ. (8)

where Φ is the transformation matrix containing the first Nr dominant POD modes

Φ = [φ1, . . . , φNr ] ∈ RNx×Nr (9)

where Nx is the spatial dimension of the FOM.
The variables in this dynamical system are the time dependent coefficients a. The

ordinary differential equations (6) are discretized in time and solved using the backward
Euler method. For more details the reader is referred to [3, 8, 9].
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4.2 POD-based identification

The main issue of the POD-Galerkin method is its intrusiveness as described in the in-
troduction. The POD-based identification method is proposed as a non-intrusive reduced-
order method for parametric CFD problems. This PODI method uses the set of known
time-dependent coefficients, ai(t), obtained by projecting all snapshots on the POD basis,
φi(x), in the offline phase as follows

a(t) = ΦTT (x, t) (10)

where Φ is the transformation matrix containing the first Nr dominant POD modes as
given by equation (9).

This method is similar to the Dynamic Mode Decomposition (DMD) technique where
the snapshots with linear dynamics are fitted on a reduced order subspace, typically
POD modes, to capture the dynamics of the system. For nonlinear problems the DMD
technique can be combined with direct subspace techniques to construct an input-output
reduced order model or so called state space model (for more details see [10] and [11]).

The PODI method proposed here does not construct a state space model, but iden-
tifies the reduced matrices of the same form as in the POD-Galerkin method using a
least-squares technique such as normal equations, QR-decomposition or SVD. A set of
ordinary differential equations, still describing the physical model, is obtained. The re-
sulting reduced system of equations is then solved online for a given set of parameters.

The offline-online decomposition of the POD-Galerkin method is thus maintained. In
case multiple distinguishable matrices with a multiplication parameter are present in
the FOM (as in equation (2)), then as many full order simulations as number of distin-
guishable matrices are required to determine the reduced matrices with the least-squares
approach. For the example given in this paper, where the thermal diffusivity and input
velocity are taken as the parameters, a minimum of two sets of simulations are required
to distinguish the reduced matrices for the convection and diffusion part. This is one of
the disadvantages of the proposed PODI method. The Galerkin method requires only
one full order simulation. However, this advantage of the Galerkin method will be less
for parameterized problems with high dimensionality as in practice multiple full order
simulations for different parameter sets are added to the snapshot matrix to improve the
reduced solutions away from the snapshots.

5 Simulation set-up

5.1 Offline phase

A Matlab [12] code has been written to solve the 2D full order model for the convection-
diffusion equations as given by (1), with no sources or sinks present, using the finite volume
method on a Cartesian grid, Ω = (0, 1)×(0, 1). The uniform grid consists of 25×25 control
volumes. An upwind scheme is included for the convective term and an implicit time
discretization scheme is applied to enhance stability. Homogeneous Neumann boundary
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conditions are applied on all boundaries Γ and the initial condition is given by the function

T (0, x, y) = sin

(
1

2
πx

)
· sin

(
1

2
πy

)
. (11)

The first parameter set is given by a thermal diffusivity of α = 1× 10−6 m2/s and
a uniform time-independent velocity field in space where the velocity in the x-direction
equals the velocity in the y-direction with ‖u‖ = 0.01 m/s. The simulation is run until
t = 2 s with a constant time step of ∆t = 2× 10−2 s. Snapshots are taken at every time
step, resulting in a total of 101 snapshots per parameter set.

Next the POD basis is created as described in section 3 using economy-size singu-
lar value decomposition in Matlab [12]. Then the Galerkin-projection and identification
method with the QR-decomposition as least-squares approach are applied as described in
sections 4.1 and 4.2, respectively. The Galerkin method requires only one full order simula-
tion to be able to determine the reduced matrices. However the PODI method requires at
least as many full order simulations as the number of reduced matrices to be distinguished
for the parametrized problem. As there are two parameters, two full order simulations
are needed. Therefore a second full order simulation is done for α = 1× 10−5 m2/s and
‖u‖ = 0.02 m/s. The snapshots of the two different simulations are used to create the
POD basis.

5.2 Online phase

The two ROMs, POD-Galerkin and PODI, are constructed as described in previous sec-
tions. The calculation of the ROM solutions is performed in MATLAB using a backward
substitution method. The ROM computational time depends on the number of modes
used and no longer on the degrees of freedom of the FOM. Finally the results of the PODI
method are compared with the POD-Galerkin method and the benefits and limitations
are discussed. As the reduced basis is the same for the PODI method and the POD-
Galerkin method, also the reduced matrices obtained through respectively identification
and projection are compared. Finally intermediate values are chosen for the parameters
to test the ROM. The values chosen are α = 7× 10−5 m2/s and ‖u‖ = 0.0125 m/s and
these have thus not been used to create the snapshot matrix.

6 Results and Discussion

In this section the accuracy of the ROMs for the non-parametric case is tested and the
eigenvalues of reduced matrices obtained for both methods are compared. The same is
done later on for the parametric case and the results are discussed.

Firstly one full order simulation is performed for the first parameter set. The initial
temperature field at t = 0 s and the final field at t = 2 s are shown in figure 1. The
modes are determined with the POD approach and the decay of the normalized POD
eigenvalues is shown in figure 2 in order to determine the number of basis functions needed
to create the reduced subspace. The figure shows that 8 basis functions are needed to
have a truncation error less than 10−4 and that is sufficient for this specific case. The
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parametrization is not considered yet and thus only one reduced matrix, containing all
linear terms, has to be determined with the Galerkin projection and the PODI method.

Furthermore simulations are done for the obtained set of ODEs and the full order
solution is reconstructed. The accuracy of the ROMs is checked by calculating the l2

error of the temperature field, as shown in figure 3, for the two reduction methods and
comparing them with the error given by the projection of the snapshots onto the POD
basis, called here the basis projection. The l2 errors, which are of the order 10−3, are
varying slightly over the investigated time interval and are on top of each other, indicating
that the ROMs describe the same system as the FOM. The ROM-Galerkin solution is as
accurate as the basis projection, because the discretized equations (given by (2)) are
projected rather than the original continuous equations (given by (1)).
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(a) Temperature field at t = 0s.
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(b) Temperature field at t = 2s.

Figure 1: Full order simulation for α = 10−6 m2/s and ‖u‖ = 0.01 m/s.

The fact that the PODI method leads to the same reduced system as the Galerkin
method is also shown by the comparison of the eigenvalues of the reduced matrices ob-
tained through identification and projection in figure 4 where the eigenvalues are the same
for both methods. Also the time to calculate the POD basis functions is the same for
both ROMs. However the time to set-up the reduced order system for the PODI method
is about 5 times longer that the Galerkin projection for the non-parametrized case.

In case of the parametrized problem, the PODI method requires two parameter sets
in order to distinguish two reduced matrices; one for the diffusion term and one for the
convective term. Therefore a full order simulation is done for the second parameter set
and the results of both sets are used to create a new snapshot matrix set and the POD
basis functions. Again 8 modes are used for the creation of the reduced subspace. The
ROM set-up takes about 7 times longer for the PODI method compared to the classic
Galerkin-projection method, due to the extra set of equations that had to be solved for
the PODI method to distinguish the reduced matrices.

7



Sabrina Star, Joris Degroote, Jan Vierendeels, Gert Van den Eynde and Francesco Belloni

0 5 10 15 20 25 30
N

r

10 -20

10 -15

10 -10

10 -5

10 0

N
or

m
al

iz
ed

 P
O

D
 e

ig
en

va
lu

es

Figure 2: Normalized POD eigenvalues
for

α = 1× 10−6 m2/s and ‖u‖ = 0.01 m/s
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Figure 3: l2 error of the reconstructed
temperature with Nr = 8 for the ROMs.
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0 2 4 6 8 10
N

r

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

en
va

lu
es

PODI
Galerkin

Figure 4: Eigenvalues of the reduced
matrices for the non-parametrized case.
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Figure 5: Eigenvalues of the reduced
matrices for α = 7× 10−5 m2/s and

‖u‖ = 0.0125 m/s

Finally intermediate values are chosen for the parameters to test the accuracy of the
parameterized ROMs: α = 7× 10−5 m2/s and ‖u‖ = 0.0125 m/s. These values have not
been used to create the snapshot matrix. The eigenvalues of the reduced matrices are
plotted in figure 5. For the PODI method the eigenvalues are lower than those for the
Galerkin-projection method, but that does not result in a large deviation of the l2 error as
shown in figure 6. The PODI method performs even better than the Galerkin projection
method. However, for both methods the l2 error is of the order 10−2 and increases slightly
over the time interval, meaning that the methods are less stable for a parameter set that
has not been used for the snapshot creation.
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Figure 6: l2 error of the reconstructed temperature field with Nr = 8 for the ROMs.
α = 7× 10−6 m2/s and ‖u‖ = 0.0125 m/s.

7 CONCLUSIONS

The PODI method presented here in this paper is a non-intrusive reduction method
that can be applied to parametric CFD problems using the FVM. This method leads to the
same set of ODEs as the classic POD-Galerkin projection, meaning that the reduced model
is still describing the physical behavior of the system that has been reduced. The results
for the non-parameterized linear unsteady convection-diffusion equations are promising as
the relative error of the main variable, namely the temperature, is corresponding to the
error given by the projection of the snapshots onto the POD basis. However, the set-up
time for the PODI method is larger than for the Galerkin method as an overdetermined
system of equations has to be solved rather than applying a projection. The total offline
time could be reduced further by, for instance, optimizing the POD method.

The results for the parameterized case are about one order less accurate compared
to the non-parameterized case for both methods. However, the PODI method performs
slightly better than the Galerkin projection, but the set-up time for the PODI method
is larger, compared to the non-parametrized case, due to the extra set of equations that
had to be solved in order to distinguish the reduced matrices.

As the PODI method is based on the classic Galerkin method it might encounter the
same challenges and difficulties as already exploited in literature for the POD-Galerkin
method applied to the FVM. Examples are non-homogeneous Dirichlet boundary con-
ditions, long time integrations and instabilities. For more details the reader is referred
to [4, 8, 9, 13].

Further work will include the application of the PODI for non-linear parametric prob-
lems. Non-linear problems, as for example the convective term in the Navier-Stokes
equations, require at least as many reduced matrices as there are modes to be stored in
the offline phase [7, 8, 9]. The reduced problem is then growing with the cube of the
number of modes, but the offline-online decomposition would be maintained. Further-
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more, the stability of the method has to be studied. Finally the method will be tested on
full order results obtained from software as for example OpenFOAM or ANSYS Fluent
to demonstrate the non-intrusiveness of the method.
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