497 research outputs found

    Stokes imaging polarimetry using image restoration: A calibration strategy for Fabry-P\'{e}rot based instruments

    Full text link
    context: The combination of image restoration and a Fabry-P\'{e}rot interferometer (FPI) based instrument in solar observations results in specific calibration issues. FPIs generally show variations over the field-of-view, while in the image restoration process, the 1-to-1 relation between pixel space and image space is lost, thus complicating any correcting for such variations. aims: We develop a data reduction method that takes these issues into account and minimizes the resulting errors. methods: By accounting for the time variations in the telescope's Mueller matrix and using separate calibration data optimized for the wavefront sensing in the MOMFBD image restoration process and for the final deconvolution of the data, we have removed most of the calibration artifacts from the resulting data. results: Using this method to reduce full Stokes data from CRISP at the SST, we find that it drastically reduces the instrumental and image restoration artifacts resulting from cavity errors, reflectivity variations, and the polarization dependence of flatfields. The results allow for useful scientific interpretation. Inversions of restored data from the δ\delta sunspot AR11029 using the Nicole inversion code, reveal strong (~10 km/s) downflows near the disk center side of the umbra. conclusions: The use of image restoration in combination with an FPI-based instrument leads to complications in the calibrations and intrinsic limitations to the accuracy that can be achieved. We find that for CRISP, the resulting errors can be kept mostly below the polarimetric accuracy of ~10^-3. Similar instruments aiming for higher polarimetric and high spectroscopic accuracy, will, however, need to take these problems into account. keywords: Techniques: image processing, polarimetric, imaging spectroscopy, Sun: surface magnetism, sunspots, activityComment: Astronomy and Astrophysics (accepted

    3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway

    Get PDF
    The landscape of many historic cities and the character of their shallow subsurface environments are defined by a legacy of interaction between anthropogenic and geological processes. Anthropogenic deposits and excavations result from processes ranging from archaeological activities to modern urban development. Hence, in heritage cities, any geological investigation should acknowledge the role of past and ongoing human activities, while any archaeological investigation should be conducted with geological processes in mind. In this paper it is shown that 3D geological and anthropogenic models at different scales can provide a holistic system for the management of the subsurface. It provides a framework for the integration of other spatial and processmodels to help assess the preservationpotential for buried heritage. Such an integrated framework model is thus contributing to a decision support system for sustainable urban (re)development and regeneration in cities, while preserving cultural heritage. A collaborative approach is proposed to enhance research and implementation of combined geological and archaeological modelling for sustainable land use planning and heritage preservation, using York and Bryggen as prime examples. This paper presents the status of 3D framework modelling at Bryggen in Norway as an example

    Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA

    Get PDF
    (Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes

    Quiet-Sun imaging asymmetries in NaI D1 compared with other strong Fraunhofer lines

    Full text link
    Imaging spectroscopy of the solar atmosphere using the NaI D1 line yields marked asymmetry between the blue and red line wings: sampling a quiet-Sun area in the blue wing displays reversed granulation, whereas sampling in the red wing displays normal granulation. The MgI b2 line of comparable strength does not show this asymmetry, nor does the stronger CaII 8542 line. We demonstrate the phenomenon with near-simultaneous spectral images in NaI D1, MgI b2, and CaII 8542 from the Swedish 1-m Solar Telescope. We then explain it with line-formation insights from classical 1D modeling and with a 3D magnetohydrodynamical simulation combined with NLTE spectral line synthesis that permits detailed comparison with the observations in a common format. The cause of the imaging asymmetry is the combination of correlations between intensity and Dopplershift modulation in granular overshoot and the sensitivity to these of the steep profile flanks of the NaI D1 line. The MgI b2 line has similar core formation but much wider wings due to larger opacity buildup and damping in the photosphere. Both lines obtain marked core asymmetry from photospheric shocks in or near strong magnetic concentrations, less from higher-up internetwork shocks that produce similar asymmetry in the spatially averaged CaII 8542 profile.Comment: Accepted by Astron & Astrophys. In each in-text citation the year links to the corresponding ADS abstract pag

    The solar chromosphere at high resolution with IBIS. I. New insights from the Ca II 854.2 nm line

    Full text link
    (Abridged) Aims: In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means to investigate the solar chromosphere at high resolution. Methods: We utilize monochromatic images obtained with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas and fibrils. Results: The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals with much clarity the dual nature of the Ca II 854.2 nm line: its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points, akin to the Ca II H2V and K2V grains, as well as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights the fact that 1-D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.Comment: 13 pages, 8 figures. Accepted in A&A. Revised version after referee's comments. New Fig. 1 and 7. Higher quality figures in http://www.arcetri.astro.it/~gcauzzi/papers/ibis.caii.pd

    Nivolumab and ipilimumab in the real-world setting in patients with mesothelioma

    Get PDF
    Objectives: Nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA-4) is a new first-line treatment combination for patients with pleural mesothelioma. Nivolumab-ipilimumab improved the survival, however, 30.3% of the patients suffered from grade 3–4 treatment related adverse events (TRAE's) and TRAE's led to discontinuation in 23.0% of all patients. Here, we present the first real-world data of nivolumab plus ipilimumab in patients with malignant mesothelioma treated in two mesothelioma expert centers. Methods: Clinical data of patients with mesothelioma treated with nivolumab and ipilimumab were prospectively collected. Clinical parameters were obtained every visit, CT scans were evaluated every 12 weeks and adverse events were assessed continuously during the treatment. Data on grade 2–5 TRAE's and activity (overall response rate (ORR), duration of response (DOR), disease control rate (DCR), median progression-free survival (mPFS) and median overall survival (mOS) were reported. Results: Between January 2021 and August 2022, 184 patients were treated with nivolumab plus ipilimumab. The median follow-up was 12.1 months (95 %CI 11.1 – 13.1). Grade 3–4 TRAEs were seen in 27.7 % of the patients and 25.0 % discontinued immunotherapy treatment early because of TRAE's. ORR was 21.7 % (95 % CI 15.7–27.7), median DOR was 5.7 months (IQR 3.2–8.7) and DCR at 12 weeks 56.0 % (95 % CI 48.8–63.2). The mPFS was 5.5 months (95 %CI 4.1–6.9), mOS was 14.1 months (95 % CI 11.1–18.2). Conclusions: Nivolumab plus ipilimumab had an equal efficacy in a real-world comparable population but also a high risk of TRAE's, leading to discontinuation of treatment in 25% of the patients.</p

    Sustainability of Individual EndoAnchor Implants in Therapeutic Use to Treat Type Ia Endoleak After Endovascular Aneurysm Repair

    Get PDF
    Purpose: To investigate changes in penetration depths and angles of EndoAnchor implants with initially good penetration after therapeutic use in endovascular aneurysm repair. Materials and Methods: Patients were selected from the Aneurysm Treatment Using the Heli-FX Aortic Securement System Global Registry (ANCHOR; ClinicalTrials.gov identifier NCT01534819). Inclusion criteria were (1) EndoAnchor implantation to treat intraoperative or late type Ia endoleak and (2) at least 2 postoperative computed tomography angiography (CTA) scans. Exclusion criteria were the use of adjunct procedures. Based on these criteria, 54 patients (44 men) with 360 EndoAnchor implants were eligible for this analysis. Penetration depth of each EndoAnchor implant into the aortic wall was judged as (1) good (2-mm penetration), (2) borderline (</p
    • …
    corecore