114 research outputs found

    Synaptic Vesicle Docking: Sphingosine Regulates Syntaxin1 Interaction with Munc18

    Get PDF
    Consensus exists that lipids must play key functions in synaptic activity but precise mechanistic information is limited. Acid sphingomyelinase knockout mice (ASMko) are a suitable model to address the role of sphingolipids in synaptic regulation as they recapitulate a mental retardation syndrome, Niemann Pick disease type A (NPA), and their neurons have altered levels of sphingomyelin (SM) and its derivatives. Electrophysiological recordings showed that ASMko hippocampi have increased paired-pulse facilitation and post-tetanic potentiation. Consistently, electron microscopy revealed reduced number of docked vesicles. Biochemical analysis of ASMko synaptic membranes unveiled higher amounts of SM and sphingosine (Se) and enhanced interaction of the docking molecules Munc18 and syntaxin1. In vitro reconstitution assays demonstrated that Se changes syntaxin1 conformation enhancing its interaction with Munc18. Moreover, Se reduces vesicle docking in primary neurons and increases paired-pulse facilitation when added to wt hippocampal slices. These data provide with a novel mechanism for synaptic vesicle control by sphingolipids and could explain cognitive deficits of NPA patients

    Ultrafast nonlocal control of spontaneous emission

    Full text link
    Solid-state cavity quantum electrodynamics systems will form scalable nodes of future quantum networks, allowing the storage, processing and retrieval of quantum bits, where a real-time control of the radiative interaction in the cavity is required to achieve high efficiency. We demonstrate here the dynamic molding of the vacuum field in a coupled-cavity system to achieve the ultrafast nonlocal modulation of spontaneous emission of quantum dots in photonic crystal cavities, on a timescale of ~200 ps, much faster than their natural radiative lifetimes. This opens the way to the ultrafast control of semiconductor-based cavity quantum electrodynamics systems for application in quantum interfaces and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure

    Functional Characterization of EngAMS, a P-Loop GTPase of Mycobacterium smegmatis

    Get PDF
    Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngAMS) is highly conserved in mycobacteria. Homology modeling of EngAMS reveals a cloverleaf structure comprising of Ξ±/Ξ² fold typical to EngA family of GTPases. Recombinant EngAMS purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngAMS protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngAMS with 50S subunit of ribosome and specifically C-terminal domains of EngAMS are required to facilitate this interaction. Moreover, EngAMS devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngAMS-50S interaction

    Incomplete Inhibition of Sphingosine 1-Phosphate Lyase Modulates Immune System Function yet Prevents Early Lethality and Non-Lymphoid Lesions

    Get PDF
    BACKGROUND: S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. METHODOLOGY: In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. PRINCIPAL FINDINGS: Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL(-/-)) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PL(H/-)) or two alleles (S1PL(H/H)) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL(-/-) mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. SIGNIFICANCE: These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs

    Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    Get PDF
    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae

    Disruption of Retinoic Acid Receptor Alpha Reveals the Growth Promoter Face of Retinoic Acid

    Get PDF
    Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER), the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity.We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling.In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes apparently concur to the growth-promoter effects of RA
    • …
    corecore