21 research outputs found

    Influence of variations in penetrating solar radiation on the diurnal and intraseasonal structure of the oceanic boundary layer, The

    Get PDF
    2010 Summer.Includes bibliographical references.The upper portion of the ocean is fairly well mixed and turbulent. The turbulence within the ocean boundary layer (OBL) is regulated by many mechanisms. One process that is receiving a renewed interest is the effect of penetrating component of surface shortwave radiation on ocean dynamics. The influence of solar radiation has been parameterized in two ways. A limited set of models force all the incoming solar radiation to be absorbed in the top model layer. The second parameterization assumes that the irradiance (light) at a given level follows a multiple term exponential. Most commonly it is assumed that shortwave radiation is absorbed in two bands: visible and near infrared. The strength of the infrared absorption is assumed to be fixed. For the visible band, absorption depends on water clarity. Until recently, water clarity could take six different values (Jerlov water types). On climate scales, spatial and temporal variations in water clarity, based on surface chlorophyll, have a strong impact on the simulated ocean temperature, salinity, and momentum. For example, the sea surface temperature (SST) in the cold tongue is reduced. In addition, the strength of the Walker circulation is increased. However, this response is not consistent among different models and parameterizations. When chlorophyll is predicted, the influence of vertically variable water clarity on the thermodynamic and dynamic fields of the ocean can be examined. Studies that have incorporated an ecosystem model find minimal changes relative to using observed surface chlorophyll. Previous research has focused on longer climate time scales and most models do not consider vertical variations in water clarity. In this study the response of the ocean to diurnal and intraseasonal variations of water clarity is examined. The sensitivity to vertical variations in water clarity is also considered. To study the impact of variable solar radiation a model that accurately represents upper ocean physics is required. A new ocean mixing model is proposed that addresses some of the known deficiencies in previous models. The new model predicts entrainment based on turbulence at the OBL base, unlike other ocean models. An over prediction of the vertical heat flux in previous mixed layer models is avoided. The model framework discussed can be easily extended to any coordinate system. Further, this model can be coupled to an ocean biological model, which would determine the water clarity with depth, in a natural way. An evaluation of the new model against observations and a newly developed vector vorticity large eddy simulation (LES) model has shown that the new model preforms as well or better than previous OBL models in certain circumstances. This is especially with low vertical resolution. Since this version of the new model is local, it does not perform as well in pure convective simulations as OBL models with non-local forcing In this new model and K-Profile Parameterization (KPP), the temperature and velocity is very sensitive to variations in water clarity. Trapping more heat near the surface increases the temperature near the surface and confines daytime momentum input to a shallow layer. In addition, the depth of the thermocline is reduced as water clarity decreases. The simulated temperature and velocity fields are insensitive to subsurface variations in water clarity. The responses of the new model and KPP are similar when the turbidity of the column is taken as the near surface average. Two-dimensional simulations examining the influence of spatially variable turbidity lead to a slightly deeper thermocline and weaker near surface velocity relative to simulations with a zonally constant water clarity. It is found that models must allow solar radiation to penetrate beyond the top model level. Further, water clarity should be diagnosed from observed or predicted surface chlorophyll instead of the six Jerlov water types

    Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean Models

    Full text link
    Modeling is crucial to understanding the effect of greenhouse gases, warming, and ice sheet melting on the ocean. At the same time, ocean processes affect phenomena such as hurricanes and droughts. Parameters in the models that cannot be physically measured have a significant effect on the model output. For an idealized ocean model, we generated perturbed parameter ensemble data and trained surrogate neural network models. The neural surrogates accurately predicted the one-step forward dynamics, of which we then computed the parametric sensitivity

    Resolving and parameterising the ocean mesoscale in earth system models

    Get PDF
    Purpose of Review. Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings. The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth Systemmodels (eddy-parameterising models). In contrast, there are alsomodels submitted toCMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary. Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity

    The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

    Full text link
    This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model’s strong aerosol-related effective radiative forcing (ERFari+aci = -1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).Plain Language SummaryThe U.S. Department of Energy funded the development of a new state-of-the-art Earth system model for research and applications relevant to its mission. The Energy Exascale Earth System Model version 1 (E3SMv1) consists of five interacting components for the global atmosphere, land surface, ocean, sea ice, and rivers. Three of these components (ocean, sea ice, and river) are new and have not been coupled into an Earth system model previously. The atmosphere and land surface components were created by extending existing components part of the Community Earth System Model, Version 1. E3SMv1’s capabilities are demonstrated by performing a set of standardized simulation experiments described by the Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima protocol at standard horizontal spatial resolution of approximately 1° latitude and longitude. The model reproduces global and regional climate features well compared to observations. Simulated warming between 1850 and 2015 matches observations, but the model is too cold by about 0.5 °C between 1960 and 1990 and later warms at a rate greater than observed. A thermodynamic analysis of the model’s response to greenhouse gas and aerosol radiative affects may explain the reasons for the discrepancy.Key PointsThis work documents E3SMv1, the first version of the U.S. DOE Energy Exascale Earth System ModelThe performance of E3SMv1 is documented with a set of standard CMIP6 DECK and historical simulations comprising nearly 3,000 yearsE3SMv1 has a high equilibrium climate sensitivity (5.3 K) and strong aerosol-related effective radiative forcing (-1.65 W/m2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/1/jame20860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/2/jame20860.pd

    Model Data for comparisons

    No full text
    case data to reconstruct figures from Van Roekel et al 2018<br

    Ocean Barrier Layers in the Energy Exascale Earth System Model

    No full text
    Ocean barrier layers (BLs) separate the mixed layer from the top of the thermocline and are able to insulate the mixed layer from entrainment of cold thermocline water. Here, we provide the first global BL assessment in E3SMv1 and two other Earth system models. Compared to observations, models reproduce the global distributions as semipermanent features in some tropical regions and seasonal features elsewhere. However, model BLs are generally too thin in tropical regions and too thick in higher latitudes. BLs' ability to insulate the ocean surface from entrainment of cold thermocline water is most apparent in the tropics. Thus, E3SMv1s BL thickness biases most affect entrainment here. Tropical BLT biases appear driven by atmosphere biases, mainly through the effect of precipitation minus evaporation on mixed layer depth. At higher latitudes BL thickness biases are dominated by thermocline depth errors related to ocean circulation and vertical mixing. Plain Language Summary Most regions of the Earth's oceans exhibit a thermocline, separating relatively warm surface water from colder water below. In some regions, salinity varies sharply within the warm layer, displaying a fresh layer at the surface and a salty warm layer, termed a barrier layer, between the surface layer and the thermocline. Here we assess barrier layers in three Earth system models, focusing on the Energy Exascale Earth System Model. We show the following: Earth system models can capture barrier layers, albeit with errors in thickness; barrier layers affect exchange of water and heat between the surface and the thermocline in the tropics, but not at midlatitudes; and barrier layer model errors are not purely due to the ocean model component but are caused by several model components (ocean, atmosphere, land, and river runoff) and interactions between them.Energy Exascale Earth System Model (E3SM) project - U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research; DOE [SC0016533, DE-AC52-07NA27344]; DOE through the Los Alamos National Laboratory [89233218CNA000001]; DOE Office of Science User Facility [DE-AC02-05CH11231]; National Science FoundationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Characterizing Tropical Cyclones in the Energy Exascale Earth System Model Version 1

    No full text
    Abstract In this study, we analyze the realism with which tropical cyclones (TCs) are simulated in the fully coupled low‐ and high‐resolution Energy Exascale Earth System Model (E3SM) version 1, with a focus on the latter. Compared to the low‐resolution (grid spacing of ∌1°), the representation of TCs improves considerably in the high‐resolution configuration (grid spacing of ∌0.25°). Significant improvements are found in the global TC frequency, TC lifetime maximum intensities, and the relative distribution of TCs among the different basins. However, at both resolutions, spurious TC activity is found in some basins, notably in the subtropical regions. Contrasting the simulated large‐scale TC environment with observations reveals that the model environment is unrealistically conducive for TC development in those regions. Further analysis indicates that these biases are likely related to those in thermodynamic potential intensity, caused by systematic SST biases, and vertical wind shear in the coupled model. TC‐ocean interaction is also examined in the high‐resolution configuration of the model. The salient features of the ocean's response to TC‐induced mixing and the ocean's impact on TC intensification are well‐reproduced. Finally, an evaluation of the influence of El Niño Southern Oscillation (ENSO) on TCs in the high‐resolution configuration of the model reveals that the ENSO‐TC relationship in the model has the right sign and is significant for the North Atlantic and Northwest Pacific, albeit weaker than in observations. In summary, the high‐resolution configuration of the E3SM model simulates TC activity reasonably and hence could be a useful tool for TC‐related research
    corecore