48 research outputs found

    Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Get PDF
    Background: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km 2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D 2 of 64 and an 80 % correct classification. Conclusions: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the wester

    Evaluation of the implementation of a state government community design policy aimed at increasing local walking: Design issues and baseline results from RESIDE, Perth Western Australia

    Get PDF
    Objectives. To describe the design and baseline results of an evaluation of the Western Australian government's pedestrian-friendly subdivision design code (Liveable Neighborhood (LN) Guidelines). Methods. Baseline results (2003–2005) from a longitudinal study of people (n=1813) moving into new housing developments: 18 Liveable, 11 Hybrid and 45 Conventional (i.e., LDs, HDs and CDs respectively) are presented including usual recreational and transport related walking undertaken within and outside the neighborhood, and 7-day pedometer steps. Results. At baseline, more participants walked for recreation and transport within the neighborhood (52.6%; 36.1% respectively), than outside the neighborhood (17.7%; 13.2% respectively). Notably, only 20% of average total duration of walking (128.4 min/week (SD159.8)) was transport related and within the neighborhood. There were few differences between the groups' demographic, psychosocial and perceived neighborhood environmental characteristics, pedometer steps, or the type, amount and location of self-reported walking ( pN0.05). However, asked what factors influenced their choice of housing development, more participants moving into LDs reported aspects of their new neighborhood's walkability as important ( pb0.05). Conclusions. The baseline results underscore the desirability of incorporating behavior and context-specific measures and value of longitudinal designs to enable changes in behavior, attitudes, and urban form to be monitored, while adjusting for baseline residential location preferences

    The influence of urban design on neighbourhood walking following residential relocation : longitudinal results from the RESIDE study

    Get PDF
    The design of urban environments has the potential to enhance the health and well-being of residents by impacting social determinants of health including access to public transport, green space and local amenities. Commencing in 2003, RESIDE is a longitudinal natural experiment examining the impact of urban planning on active living in metropolitan Perth, Western Australia. Participants building homes in new housing developments were surveyed before relocation (n = 1813; 34·6% recruitment rate); and approximately 12 months later (n = 1437). Changes in perceived and objective neighbourhood characteristics associated with walking following relocation were examined, adjusted for changes in demographic, intrapersonal, interpersonal and baseline reasons for residential location choice. Self-reported walking was measured using the Neighbourhood Physical Activity Questionnaire. Following relocation, transport-related walking declined overall (p < 0.001) and recreational walking increased (p < 0.001): access to transport- and recreational destinations changed in similar directions. However, in those with increased access to destinations, transport-related walking increased by 5.8 min/week for each type of transport-related destination that increased (p = 0.045); and recreational walking by 17.6 min/week for each type of recreational destination that increased (p = 0.070). The association between the built environment and recreational walking was partially mediated by changes in perceived neighbourhood attractiveness: when changes in ‘enjoyment’ and ‘attitude’ towards local walking were removed from the multivariate model, recreational walking returned to 20.1 min/week (p = 0.040) for each type of recreational destination that increased. This study provides longitudinal evidence that both transport and recreational-walking behaviours respond to changes in the availability and diversity of local transport- and recreational destinations, and demonstrates the potential of local infrastructure to support health-enhancing behaviours. As neighbourhoods evolve, longer-term follow-up is required to fully capture changes that occur, and the impact on residents. The potential for using policies, incentives and infrastructure levies to enable the early introduction of recreational and transport-related facilities into new housing developments warrants further investigation

    Use of Cross-Taxon Congruence for Hotspot Identification at a Regional Scale

    Get PDF
    One of the most debated problems in conservation biology is the use of indicator (surrogate) taxa to predict spatial patterns in other taxa. Cross-taxon congruence in species richness patterns is of paramount importance at regional scales to disclose areas of high conservation value that are significant in a broader biogeographical context but yet placed in the finer, more practical, political context of decision making. We analysed spatial patterns of diversity in six arthropod taxa from the Turkish fauna as a regional case study relevant to global conservation of the Mediterranean basin. Although we found high congruence in cross-taxon comparisons of species richness (0.241<r<0.645), hotspots of different groups show limited overlap, generally less than 50 per cent. The ability of a given taxon to capture diversity of other taxa was usually modest (on average, 50 percent of diversity of non-target taxa), limiting the use of hotspots for effective conservation of non-target groups. Nevertheless, our study demonstrates that a given group may partially stand in for another with similar ecological needs and biogeographical histories. We therefore advocate the use of multiple sets of taxa, chosen so as to be representative of animals with different ecological needs and biogeographical histories

    Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    Get PDF
    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N

    Estimating how inflated or obscured effects of climate affect forecasted species distribution

    Get PDF
    Climate is one of the main drivers of species distribution. However, as different environmental factors tend to co-vary, the effect of climate cannot be taken at face value, as it may be either inflated or obscured by other correlated factors. We used the favourability models of four species (Alytes dickhilleni, Vipera latasti, Aquila fasciata and Capra pyrenaica) inhabiting Spanish mountains as case studies to evaluate the relative contribution of climate in their forecasted favourability by using variation partitioning and weighting the effect of climate in relation to non-climatic factors. By calculating the pure effect of the climatic factor, the pure effects of non-climatic factors, the shared climatic effect and the proportion of the pure effect of the climatic factor in relation to its apparent effect (r), we assessed the apparent effect and the pure independent effect of climate. We then projected both types of effects when modelling the future favourability for each species and combination of AOGCM-SRES (two Atmosphere-Ocean General Circulation Models: CGCM2 and ECHAM4, and two Special Reports on Emission Scenarios (SRES): A2 and B2). The results show that the apparent effect of climate can be either inflated (overrated) or obscured (underrated) by other correlated factors. These differences were species-specific; the sum of favourable areas forecasted according to the pure climatic effect differed from that forecasted according to the apparent climatic effect by about 61% on average for one of the species analyzed, and by about 20% on average for each of the other species. The pure effect of future climate on species distributions can only be estimated by combining climate with other factors. Transferring the pure climatic effect and the apparent climatic effect to the future delimits the maximum and minimum favourable areas forecasted for each species in each climate change scenario.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS). D. Romero is a PhD student at the University of Malaga with a grant of the Ministerio de Educacio´n y Ciencia (AP 2007-03633

    Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Get PDF
    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments
    corecore