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Abstract

Climate is one of the main drivers of species distribution. However, as different environmental factors tend to co-vary, the
effect of climate cannot be taken at face value, as it may be either inflated or obscured by other correlated factors. We used
the favourability models of four species (Alytes dickhilleni, Vipera latasti, Aquila fasciata and Capra pyrenaica) inhabiting
Spanish mountains as case studies to evaluate the relative contribution of climate in their forecasted favourability by using
variation partitioning and weighting the effect of climate in relation to non-climatic factors. By calculating the pure effect of
the climatic factor, the pure effects of non-climatic factors, the shared climatic effect and the proportion of the pure effect of
the climatic factor in relation to its apparent effect (r), we assessed the apparent effect and the pure independent effect of
climate. We then projected both types of effects when modelling the future favourability for each species and combination
of AOGCM-SRES (two Atmosphere-Ocean General Circulation Models: CGCM2 and ECHAM4, and two Special Reports on
Emission Scenarios (SRES): A2 and B2). The results show that the apparent effect of climate can be either inflated (overrated)
or obscured (underrated) by other correlated factors. These differences were species-specific; the sum of favourable areas
forecasted according to the pure climatic effect differed from that forecasted according to the apparent climatic effect by
about 61% on average for one of the species analyzed, and by about 20% on average for each of the other species. The pure
effect of future climate on species distributions can only be estimated by combining climate with other factors. Transferring
the pure climatic effect and the apparent climatic effect to the future delimits the maximum and minimum favourable areas
forecasted for each species in each climate change scenario.
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Introduction

Species distribution models (SDMs) are becoming increasingly

important tools for conservation biology, because determining

which factors drive the distribution patterns can help to adopt

more specific and appropriate strategies for the management and

conservation species [1]. This knowledge is also the basis for

making good forecasts on the effect of climate change on future

species distributions or suitable areas, which is a new challenge for

environmental managers [2, 3]. However, the estimation of impact

of the climate change on future species distribution is complex and

related to different kinds of uncertainties [4–9], including the

inability to assess the weight of climate as a driver of species

distribution.

Climate envelope models are widely used to forecast future

species distributions under climate change scenarios [10–13].

Some authors argue against the validity of using SDMs based on

climatic variables alone as tools to forecast future species

distributions, because they consider that other factors play a role

in the distributions and that these factors are not taken into

account in the models [3, 5, 14–16]. Apart from climate, species

distributions may be controlled by spatial trends, topography,

human activity, biotic interactions, history, and population

dynamics, among others [17–20]. As species may show differential

responses to these factors [3, 5, 21], their combined importance

should be assessed before projecting species distribution models to

the future. In addition, the effect of climate can only be assessed in

the context of the other influential factors, because its pure effect

on species distributions could be obscured or overrated by

correlated aspects, becoming evident only when all the relevant

factors are considered together [18, 19, 22, 23].

Variation partitioning techniques have been used to separate

the effects of different factors on species richness [24, 25], on

abundance [26], on ecological communities [27], on species

assemblages [28] and also on species distributions [29, 30]. These

techniques have also been used to segregate the pure effect of

different factors (topography, climate, human activity, spatial

situation and lithology) on species distributions [31]. However,

these techniques have not been used to relate the pure climatic

effect to its apparent effect, being the latter in correlation with

other factors. This is of fundamental importance, because the

apparent climatic effect could be misrepresenting the true role of

climate on species distributions due to the effect of other correlated

factors. Therefore, the potential changes in species distributions

related to climate change could be distorted and lead to misleading
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conclusions about the species vulnerability or their risk of

extinction.

Mountains are areas of interest regarding the early detection

and study of the signals of climate change and its impact on

ecological systems [32]. Mountain species are particularly sensitive

to climate change [33–36], because mountain areas have more

pristine habitats than lowland landscapes, and because these

species can track climate change over shorter distances [37, 38].

Predicting the possible effects of climate change on the future

distributions of these kinds of species is of fundamental importance

in conservation plans.

We evaluated the relative contribution of climate in mainland

Spain to the forecasted favourability of four vertebrate mountain

species whose distributions are related to climate and to altitude or

slope, and for which published distribution models are available

both for the present and for the future according to the apparent

effect of climate [8, 19]. The aim of this work is to propose a

method by which to analyze the relative contribution of climate in

relation to non-climatic factors (spatial, topographic, and human)

and to distinguish between its apparent and its pure effect in

models designed to forecast how favourable areas for species could

vary because of climate change. Our results underline the possibly

misleading outcome of not considering the pure climatic effect in

the projections of the SDMs to the future.

Methods

The study area
Mainland Spain is located in southwestern Europe and covers

an area of 493,518 km2. Its latitude (40u N), geographical position

and complex orography make its climate heterogeneous, with a

precipitation gradient (100–2500 mm) decreasing mainly eastward

and southward, and a temperature gradient (6u–18uC) decreasing

mainly northward [39]. In Spain, five homogeneous climatic

precipitation regions [39] can be distinguished: 1) the North

Atlantic coast, which has abundant and regular precipitation due

to the continuous arrival of Atlantic frontal systems; 2) the central

area that receives wet and cold air intrusions from frontal Atlantic

systems and presents low precipitations; 3) the eastern coast, which

is characterized by irregular and scanty annual precipitation, with

large variability due to severe rainfall events produced by wet and

warm air intrusions from the Mediterranean Sea [40]; 4) the

southeastern region, which is a dry desert-like area with very little

rainfall; and 5) the southwestern region, which has more regular

and abundant rainfall influenced by Atlantic winds.

This makes Spain particularly appropriate for analyzing the

effect of different climate change scenarios on species distributions

(e.g., [19]).

The species
We analysed the distribution in mainland Spain of four

vertebrate species whose distributions are positively associated

with altitude or slope. We chose an amphibian (Baetic midwife

toad, Alytes dickhilleni), a reptile (Lataste’s viper, Vipera latasti), a bird

(Bonelli’s eagle, Aquila fasciata) and a mammal (Iberian wild goat,

Capra pyrenaica). A. dickhilleni is a small toad, between 32.8 and 56.5

mm in length, endemic to Spain and located exclusively in the

mountainous systems of the southwestern part of the Iberian

Peninsula. It lives on rough and steep terrains, in cracks and

crevices next to streams, springs and pools. Species reproduction

occurs in permanent water points. V. latasti is a venomous viper

species found in southwestern Europe and northwestern Africa,

which can reach 70 cm in length. Its distribution in Spain is

relegated by human activity to mountainous and sparsely

populated areas. A. fasciata is a small to medium-size eagle, 55–

65 cm in length. It is one of the rarest raptors in Europe and is a

priority target species for special conservation measures in Spain

(Council Directive 2009/147/EC and National Real Decreto

439/1990). It occupies mountain ranges, small hills and plains,

where it breeds mainly in cliffs. C. pyrenaica is an endemic goat,

only found in the mountainous areas of Spain. It is a species with

strong sexual dimorphism, males are larger than females and their

horns are three times longer and thicker than those of females. It

lives in both forests and grassy expanses in mountains at altitudes

between 500 and 2500 meters.

Baseline models
As starting point, we used the current favourability models

obtained for A. dickhilleni, V. latasti, A. fasciata and C. pyrenaica using

different climate change scenarios in mainland Spain, available in

Márquez et al. [19]. The distributions of the four species were

modelled using variables related to climate, spatial situation,

topography, and human activity (see Table S1 for more specific

details of the variables) and with the favourability function as the

modelling technique [41–43]. Climatic variables were provided by

the Agencia Estatal de Meteorologı́a (AEMET), which regional-

ized the general circulation models CGCM2 (Canadian Climate

Centre for Modeling) and ECHAM4 (Max Planck Institut für

Meteorologie) and the A2 and B2 emission scenarios for Spain.

Mean values of the climatic variables were obtained for the

periods: 1961–1990, 2011–2040, 2041–2070 and 2071–2100

(Figure S1). For each species a total of four factor models were

obtained, related to climate alone, spatial situation alone,

topography alone, and human activity alone, respectively. A

combined model was then obtained which took into account the

four environmental factors (climatic and non-climatic) together

(see Márquez et al. [19] for more details). In this way, the

favourability values for each species in each cell at the present time

(Fp) were obtained. Future favourability values for each species

according to the apparent effect of climate (FfClim) in each cell, as

well as an analysis of the impact of climate model choice and

scenario choice on expected favourability, were obtained by Real

et al. [8] by replacing the current (1961–1990) climatic values in

the combined favourability models with those expected according

to each AOGCM and SRES for the following time periods (2011–

2040, 2041–2070, 2071–2100).

Variation partitioning
We segregated the pure effect of climate from the effect of the

other factors in the models using a variation partitioning

procedure similar to that of Borcard et al. [44], Barbosa et al.

[29] and Muñoz et al. [45] with some modifications. Thus, we

specified how much of the variation of the combined favourability

model was explained by the pure effect of climate (not affected by

the covariation with other factors in the model), and which

proportion of the climate effect cannot be distinguished from that

of the other factors (shared effect) [45].

The portion of the variation in the model apparently explained

by climate was estimated using the coefficient of determination of

the linear regression of the logit function (y) of the model on the

climatic variables included in it (R2
Clim) for the period 1961–1990;

the part apparently explained by the non-climatic factors (R2
NClim)

was obtained in a similar manner. The pure effect of climate

(R2
pClim) was then assessed by subtracting from 1 the variation of

the combined model explained by the non climatic factors

(R2
pClim = 1 - R2

NClim). The pure effect of the non-climatic factors

was obtained by subtracting from 1 the variation explained by

climate (R2
pNClim = 1 - R2

Clim). The effect shared by climate and

The Pure Effect of Climate on Species Distribution
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non-climatic factors was obtained by subtracting from 1 both pure

effects (R2
ClimNClim = 1 - R2

pClim - R2
pNClim). We used the adjusted

R2 in all cases [46] although, given the high number of cells used

(n = 5167 10x10 km2 UTM cells), the difference between R2 and

adjusted R2 was very small. This partitioning procedure was applied

only to the portion of variation explained by the model, not over the

total variation of the species distribution [44, 46], as it is the

explanatory model which is calibrated to be transferred to the future.

We expressed these effects as percentages and considered them to be

the percentage of model variation attributable to the pure climatic

effect (PCE), the pure non-climatic effect (PNCE) and the shared

effect of climate and non-climatic factors (SCE).

We estimated the proportion of the apparent climatic effect

represented by the pure effect of climate as(r)~
R2

pClim

R2
Clim

. We

calculated the logit function expected for the future in each cell

according to the pure effect of climate (yfClim) by applying the

expressionyfC lim~ypzr yf {yp

� �
, where yp is the logit function at

the present time and yf is the logit function expected for the future

according to the apparent effect of climate. We obtained the future

favourability according to the pure climatic effect (FfPClim) using the

expression:

FfPC lim~
exp

yfC lim

n1
n0

z exp
yfC lim

where n1 is the number of presences and n0 the number of

absences (see formula 7 in Real et al. [41]).

This way of inferring the effect of climate differs from usual

projections according to climate change scenarios, which are

customarily based on the apparent effect of climate. The difference

between the sum of areas forecasted to be favourable according to

the apparent climatic effect (FAC), calculated using the ex-

pressionFAC~
X

FfC lim, and those forecasted according to the

pure climatic effect (FPC), calculated using the ex-

pressionFPC~
X

FfPC lim, was computed and expressed as the

relative proportion of discrepancy R = (FAC-FPC )/FAC.

Results

Climate had a more significant effect than non-climatic factors

on A. fasciata (Table 1). However, for the other species (A. dickhilleni,

V. latasti and C. pyrenaica), the non-climatic effect was more

important than the climatic effect (Table 1). In addition, regarding

A. dickhilleni, the percentage of variation of the model attributable

to a Shared Climatic Effect (SCE) was very important, which

means that the apparent effect of climate could be due in large

part to other correlated factors. Regarding A. fasciata and C.

pyrenaica, the values of SCE were negative in the majority of the

models. These negative values measure the amount of reciprocal

obscuring caused by factors that have opposite geographic effects

on the explained favourability, so that in these species the apparent

climatic effect under-represents the pure climatic effect.

Figure 1 shows three examples of the differences between

forecasted favourabilities taking into account the apparent climatic

effect (FAC) and the pure climate effect (FPC), when FPC is lower,

similar or higher than FAC. The differences between the two future

forecasted favourabilities (FAC - FPC) and the relative proportion of

discrepancy between both types of effects (R = (FAC - FPC) / FAC)

are shown in Table 2. Figure 2 shows the spatial distribution of the

difference between the forecasted favourabilities taking into

account the apparent climatic effect and the pure climatic effect

(|FfClim - FfPClim|) for the species and situations described in

Figure 1.

Discussion

The inclusion of climatic and non-climatic factors in SDMs is

recommended not only because it can improve fit and increase

their predictive accuracy [47, 48], but also because the effect of

climate can only be assessed in the context of the other influential

factors [18, 19, 22, 23]. Our results show that the correlation of

influential non-climatic factors with temperature and precipitation

could either inflate or obscure the apparent effect of climate, and

that this modification of the apparent effect of climate would

remain hidden if non-climatic variables were not included in the

SDM. Even the use of the latitude and longitude of every cell alone

may pinpoint certain areas of origin, dispersion, or past vicariance

events driving current distributions, which results in a historically-

caused spatial pattern that may coincide with specific climatic

characteristics [49]. Consequently, the true effect of climate should

be assessed in the context of spatial influences both on species

distributions and on climate [50]. We used human, topographic

and spatial variables as non-climatic predictors that, although

correlated with climatic variables, can influence species distribu-

tions for reasons not directly linked to climate [18]. It was by

taking into account these non-climatic factors and removing their

effects statistically that we identified the underlying pure climate-

distribution relationships, which could then be used in forecasting

their distribution shifts under climate change [3].

However, the inclusion of climatic variables together with non-

climatic, static variables entails other kinds of problems. Stanton et

al. [51] considered that static variables such as elevation, latitude

or longitude may hinder the accuracy of future predictions, as the

relationships between them and climatic variables is likely to

change in the future, and that including such variables in the SDM

is likely to result in models which underestimate the effects of

climate change. Our results confirm that this may be the case,

although these effects may be under- or over-estimated. Our

procedure is a way to gauge these relationships and assess the

Table 1. Variation partitioning of the combined favourability
models for the period 1961–1990.

AOGCM-SRES A. dickhilleni V. latasti A. fasciata C. pyrenaica

CGCM2-A2 PNCE 36.20 56.13 67.07 78.63

PCE 6.80 24.19 66.73 38.40

SCE 57.00 19.68 233.80 217.03

r 0.107 0.551 2.026 1.797

CGCM2-B2 PNCE 37.27 59.27 57.78 77.99

PCE 7.02 37.62 72.82 37.82

SCE 55.71 3.10 230.60 215.80

r 0.112 0.924 1.725 1.718

ECHAM4-A2/B2 PNCE 66.43 43.61 46.92 80.08

PCE 12.11 19.45 79.28 6.40

SCE 21.46 36.94 226.19 13.53

r 0.361 0.345 1.493 0.321

Values shown are the percentages of variation explained by the Pure Non-
Climatic Effect (PNCE), the Pure Climatic Effect (PCE) and the Shared Climatic
Effect (SCE). r: Proportion of pure climatic factor in relation to the whole
climatic factor.
doi:10.1371/journal.pone.0053646.t001
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maximum extent to which the current correlation between these

static variables and climate may affect the climatic parameters in

the SDM.

On the other hand, the shared climatic effect is equally

attributable to climate or to other correlated factors, so in our

current state of knowledge the exact effect of climate cannot be

determined with precision, although it lies somewhere between the

apparent effect and the pure effect. The uncertainty related to the

differences between both effects vary spatially and their intensity

depends on the species (see Figure 2). This kind of uncertainty is

added to other sources of uncertainty associated with forecasting

future species distributions [8, 52, 53], among them those derived

from assuming that the species’ climate tolerances will remain

constant through time, which is one serious limitation to the

customary use of SDMs. However, despite these uncertainties, the

estimation of species range shifts is the basis to predict where the

species are likely to move under different future conditions [54].

More reliable predictions of species distribution responses to future

climate conditions depend on developing more rigorous statistical

analyses of the available data and on the combination of different

factors, as well as on placing limits on the different uncertainties

involved in the scientific forecasting of future events [19].

Transferring the pure climatic effect and the apparent climatic

effect to the future allows us to delimit the maximum and

minimum effect of climate on the species distributions.

Most of the favourability models of all the species considered in

this study included three or four factors (spatial situation,

topography, human activity and climate) (see Table 3 in Márquez

et al. [19]) that we summarized into a climatic factor and a non-

climatic factor. Pure climatic effect (PCE), pure non-climatic effect

(PNCE) and shared climatic effect (SCE) on the future favourable

areas for A. dickhilleni, V. latasti, A. fasciata and C. pyrenaica differed

substantially (see Table 1). For A. dickhilleni, V. latasti and C.

pyrenaica the PNCE was more important than the PCE, which

Figure 1. Forecasted favourability. Distribution of the future favourability forecasted according to the apparent climatic effect (FAC) and that
forecasted according to the pure climatic effect (FPC). These maps represent three situations: FAC , FPC, FAC & FPC, FAC . FPC. The examples shown
are those where the difference or similarity were most evident.
doi:10.1371/journal.pone.0053646.g001
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suggests that their future distributions will be more related to non-

climatic environmental variables, such as biotic interactions, past

human activities or past contingent events, than with the climatic

factor [31, 55]. For A. fasciata, and in most scenarios for C.

pyrenaica, the SCE was negative, that is, the climatic effect and the

non-climatic effect can be reciprocally obscured by their opposite

effect on the explained favourability (Table 1) [24, 46]. In these

cases the apparent climatic effect under-represents the pure

climatic effect. Future favourabilitiy for these cases taking into

account the pure climatic effect would represent their maximum

future favourable area, which is higher than that forecasted

according to the apparent climatic effect (Table 2). The future

areas favourable to A. dickhilleni forecasted according to the

apparent climatic effect differed from those forecasted according to

the pure climatic effect by 61% on average, which was the highest

difference in the four species considered (Table 2). In this case, the

apparent climatic effect was highly inflated by non-climatic factors.

The SCE could be a measure of uncertainty related to the

complex interactions existing between climate and non-climatic

factors. In some cases it represents the obscured climatic effect

(when it has a negative value) and in other cases the inflated

climatic effect (when it has a positive value). In any case, the SCE

represents the uncertainty associated with the possibility of

misunderstanding the effect of climate due to the effect of other

correlated factors. This improves the usefulness of this kind of

model for understanding species’ potential responses to climate

change, although possible changes in species-environment corre-

lations through time can, nevertheless, place a limit on the

predictive performance of these models [56]. According to

Pearson and Dawson [10], understanding the complex interaction

between the many factors affecting distributions is needed for the

performance of more realistic simulations of the effect of climate

change on species distributions. Models that take the effect of

climate at face value yield future potential favourable areas that

Figure 2. Differences between forecasted local favourabilities. Distribution of the uncertainty associated with differences between the
favourabilities forecasted according to the apparent and the pure climatic effect (|FfClim - FfPClim|) for the three species and situations represented in
Figure 1.
doi:10.1371/journal.pone.0053646.g002
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are, depending on the species, overestimated or underestimated.

Using the method proposed in this paper, models may more

realistically assess the levels of potential threat or opportunities to

species of climate change.

Conclusion

In contrast to the tendency of not using correlated variables in

spatial distribution models due to the possibility of the resulting

coefficients can being unstable, we have to deal with the fact that

in nature most factors are correlated; thus analyses that separate

the pure and combined effect of the relevant factors should be

performed. Given that the apparent effect of climate can be either

inflated or obscured by other correlated factors, transferring both

the pure climatic effect and the apparent climatic effect to the

future allows us to delimit the maximum and minimum favourable

areas forecasted for each species in each climate change scenario,

thus permitting us to assess the uncertainty associated with the

possibility of misrepresenting the effect of climate. This also allows

us to detect and control the over- or under-estimation of the effect

of climate change (either positive or negative) on future species

distributions that is implicit in current climate envelope models.

This may make models more complex and harder to perform, but

the output would be closer to what may be scientifically forecasted

taking into account this kind of uncertainty.
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2071–2100 CGCM2-A2 2335.978 24.230 2328.051 20.225 2864.559 20.309 724.801 0.176

CGCM2-B2 2269.066 21.262 512.495 0.173 2613.793 20.217 2551.656 20.237

ECHAM4-A2 29.056 20.022 350.620 0.133 2285.609 20.114 943.755 0.335

ECHAM4-B2 148.574 0.227 214.544 0.089 2578.274 20.177 813.794 0.311

Mean absolute percentage of change 61.33 18.86 18.05 22.10

R: Relative proportion of change ((FAC - FPC) / FAC).
doi:10.1371/journal.pone.0053646.t002
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34. Peñuelas J, Boada MA (2003) Global change-induced biome shift in the
Montseny mountains (NE Spain). Global Change Biol 9: 131–140.

35. Wilson RJ, Gutiérrez D, Gutiérrez J, Martı́nez D, Agudo R, et al. (2005)

Changes to the elevational limits and extent of species ranges associated with
climate change. Ecol Lett 8: 1138–1146.

36. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range

expansions and contractions of vascular plants in the high Alps: observations
(1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Global

Change Biol 13: 147–156.
37. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in

butterfly species richness and composition accompanying recent climate change.

Global Change Biol, 13: 1873–1887.
38. Gasner MR, Jankowski JE, Ciecka AL, Kyle KO, Rabenold KN (2010)

Projecting the local impacts of climate change on a Central American montane
avian community. Biol Conser 143: 1250–1258.
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