83 research outputs found

    Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroides

    Get PDF
    AbstractWe studied the accumulation of long-lived charge-separated states in reaction centers isolated from Rhodobacter sphaeroides, using continuous illumination, or trains of single-turnover flashes. We found that under both conditions a long-lived state was produced with a quantum yield of about 1%. This long-lived species resembles the normal P+Q− state in all respects, but has a lifetime of several minutes. Under continuous illumination the long-lived state can be accumulated, leading to close to full conversion of the reaction centers into this state. The lifetime of this accumulated state varies from a few minutes up to more than 20 min, and depends on the illumination history. Surprisingly, the lifetime and quantum yield do not depend on the presence of the secondary quinone, QB. Under oxygen-free conditions the accumulation was reversible, no changes in the normal recombination times were observed due to the intense illumination. The long-lived state is responsible for most of the dark adaptation and hysteresis effects observed in room temperature experiments. A simple method for quinone extraction and reconstitution was developed

    Coherent generation of symmetry-forbidden phonons by light-induced electron-phonon interactions in magnetite

    Full text link
    Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the order parameter are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3_3O4_4) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions

    Aqueous Solvation Dynamics at Metal Oxide Surfaces

    Get PDF
    Broadband transient absorption (TA) spectroscopy, three-pulse photon echo peak shift (3PEPS), and anisotropy decay measurements were used to study the solvation dynamics in bulk water and interfacial water at ZrO2 surfaces, using Eosin Y as a probe. The 3PEPS results show a multiexponential behavior with two subpicosecond components that are similar in bulk and interfacial water, while a third component of several picoseconds is significantly lengthened at the interface. The bandwidth correlation function from TA spectra exhibits the same behavior, and the TA spectra are well reproduced using the doorway-window picture with the time constants from PEPS. Our results suggest that interfacial water is restricted to a thickness of less than 5 angstrom. Also the high-frequency collective dynamics of water does not seem to be affected by the interface. On the other hand, the increase of the third component may point to a slowing down of diffusional motion at the interface, although other effects, may play a role, which are discussed

    Biomechanics of cells and tissues: What can we learn when we combine mechanical stimuli with microscopy?

    Get PDF
    Understanding the mechanical properties of biological tissues can shed light on how those tissues work and why, at times, they lose their functionality. Furthermore, a full characterization of a tissue’s viscoelastic behavior may provide relevant hints for tissue reparation and tissue engineering. To measure these properties in in-vitro or ex-vivo experiments, researchers often make use of indentation instruments, which looks at how a material deforms under the effect of a calibrated mechanical load. In the first part of my talk, I will show how this technique can be used to determine the mechanical properties of brain slices, and I will comment on which kind of information those measurements can provide. I will show, for instance, that different regions of the brain have remarkably different viscoelastic properties, which seem to be correlated with the cell density measured, in a parallel experiment, via fluorescent microscopy. As this example highlights, indentation measurements alone are often not sufficient to understand why certain tissues have certain mechanical properties. Under a (not transparent) surface, biological materials are often inhomogeneous and anisotropic. Because the indentation stress propagates several microns deep into the sample, without a proper imaging tool coupled to the indentation instrument, it is impossible to extract useful information on the mechanics of the material the sample is made of. As a point in case, I will show our latest measurements of the mechanical properties of chick embryos, where, combining indentation with optical coherence tomography (OCT), we could precisely map the stiffness of the spine from head to tail – a measurement that may provide interesting cues in the analysis of somites formation and growth. I will also show how the combination of indentation and OCT might find its way in scar and burn classification, introducing a new instrument for skin characterization that our group has just recently completed. Finally, I will show some preliminary results on the use of multiphoton imaging for tissue mechanics characterization. In this last part of the talk, I will show that it is indeed possible to look at the displacement and deformation of cells in a thin slice of tissue while the tissue is compressed by a calibrated mechanical stroke. This approach may pave the way for a much more thorough analysis of the origin of certain mechanical properties of tissues, where the contribution of the individual cells to the viscoelastic features of the materials can be finally disentangle from that of the extracellular matrix. This project was supported by LASERLABEUROPE under the EC’s Seventh Framework Program (Grant agreement No. 284464), by the European Union’s Seventh Framework Programme (FP/20072013)/ERC grant agreement no. 615170, by the Dutch Technology Foundation (STW) under the OMNE program (13183 and under the iMIT program (P11–13). Declaration of interest: Davide Iannuzzi is founder, shareholder, and advisor of Optics11

    Multiphoton-Excited Luminescent Lanthanide Bioprobes: Two- and Three-Photon Cross Sections of Dipicolinate Derivatives and Binuclear Helicates

    Get PDF
    Multiphoton excited luminescent properties of water-soluble EuIII and TbIII complexes with derivatives of dipicolinic acid functionalized with a polyoxyethylene pendant arm and terminal groups, [Eu(LOMe)3]3-, [Eu(LNH2)3]3-, and [Tb(LOH)3]3-, as well as of binuclear helicates with overall composition [Ln2(LCX)3] (X ) 2, 5) are investigated. Characteristic emission from the 5D0 and 5D4 excited levels of EuIII and TbIII, respectively, upon ≈800 nm excitation results from three-photon absorption (3PA) for [Eu(LOMe)3]3-, [Eu(LNH2)3]3-, [Tb(LOH)3]3-, and [Ln2(LC2)3], while luminescence from [Eu2(LC5)3] is induced by two-photon absorption (2PA) owing to its 1PA spectrum extending further into the visible. The 3PA cross sections have been determined and are the first ones reported for lanthanide complexes: (i) those of EuIII and TbIII bimetallic helicates [Ln2(LC2)3] are 20 times larger compared to the corresponding values for tris(dipicolinates); (ii) derivatization of dipicolinic acid for TbIII complexes has almost no influence on the 3PA cross section; however, for EuIII complexes a ∌2 times decrease is observed. The feasibility of [Eu2(LC5)3] as multiphoton luminescence bioprobe is demonstrated by two-photon scanning microscopy imaging experiments on HeLa cells incubated with this bimetallic helicate

    Theoretical studies of 31P NMR spectral properties of phosphanes and related compounds in solution

    Get PDF
    Selected theoretical methods, basis sets and solvation models have been tested in their ability to predict 31P NMR chemical shifts of large phosphorous-containing molecular systems in solution. The most efficient strategy was found to involve NMR shift calculations at the GIAO-MPW1K/6-311++G(2d,2p)//MPW1K/6-31G(d) level in combination with a dual solvation model including the explicit consideration of single solvent molecules and a continuum (PCM) solvation model. For larger systems it has also been established that reliable 31P shift predictions require Boltzmann averaging over all accessible conformations in solution

    Prespecified Risk Criteria Facilitate Adequate Discharge and Long‐Term Outcomes After Transfemoral Transcatheter Aortic Valve Implantation

    Get PDF
    Background Despite the availability of guidelines for the performance of transcatheter aortic valve implantation (TAVI), current treatment pathways vary between countries and institutions, which impact on the mean duration of postprocedure hospitalization. Methods and Results This was a prospective, multicenter registry of 502 patients to validate the appropriateness of discharge timing after transfemoral TAVI, using prespecified risk criteria from FAST‐TAVI (Feasibility and Safety of Early Discharge After Transfemoral [TF] Transcatheter Aortic Valve Implantation), based on hospital events within 1‐year after discharge. The end point—a composite of all‐cause mortality, vascular access–related complications, permanent pacemaker implantation, stroke, cardiac rehospitalization, kidney failure, and major bleeding—was reached in 27.0% of patients (95% CI, 23.3–31.2) within 1 year after intervention; 7.5% (95% CI, 5.5–10.2) had in‐hospital complications before discharge and 19.6% (95% CI, 16.3–23.4) within 1 year after discharge. Overall mortality within 1 year after discharge was 7.3% and rates of cardiac rehospitalization 13.5%, permanent pacemaker implantation 4.2%, any stroke 1.8%, vascular‐access–related complications 0.7%, life‐threatening bleeding 0.7%, and kidney failure 0.4%. Composite events within 1 year after discharge were observed in 18.8% and 24.3% of patients with low risk of complications/early (≀3 days) discharge and high risk and discharged late (>3 days) (concordant discharge), respectively. Event rate in patients with discordant discharge was 14.3% with low risk but discharged late and increased to 50.0% in patients with high risk but discharged in ≀3 days. Conclusions The FAST‐TAVI risk assessment provides a tool for appropriate, risk‐based discharge that was validated with the 1‐year event rate after transfemoral TAVI. Registration URL: https://www.ClinicalTrials.gov ; Unique identifier: NCT02404467
    • 

    corecore