227 research outputs found

    Het Warandekasteel te Diest

    Get PDF

    Influence of Temperature on Post-Breakage Behaviour of Laminated Glass Beams : Experimental Approach

    Get PDF
    The assessment of the post-breakage performances of laminated glass elementsused in construction need to take into account the sensitivity to the temperature ofthe mechanical behaviour and properties of the product, in particular of theinterlayer material. A general problem statement and an overview of differentexperimental approaches are firstly presented. Then results of specific orientationtests on pre-cracked laminated glass beams with a stiff interlayer of DuPont carriedat three different temperatures (23, 45 and 60°C) are presented and commented. Acomparison of the mechanical behaviour at the different temperatures is done,aiming to give a comprehensive order of magnitude of the sensitivity totemperature of the post-breakage behaviour observed during the tests

    Numerical Simulation of Particle Dynamics in a Spiral Jet Mill via Coupled CFD-DEM

    Get PDF
    Spiral jet mills are ubiquitous in the pharmaceutical industry. Breakage and classification in spiral jet mills occur due to complex interactions between the fluid and the solid phases. The study of these interactions requires the use of computational fluid dynamics (CFD) for the fluid phase coupled with discrete element models (DEM) for the particle phase. In this study, we investigate particle dynamics in a 50-mm spiral jet mill through coupled CFD-DEM simulations. The simulations showed that the fluid was significantly decelerated by the presence of the particles in the milling chamber. Furthermore, we study the particle dynamics and collision statistics at two different operating conditions and three different particle loadings. As expected, the particle velocity was affected by both the particle loading and operating pressure. The particles moved slower at low pressures and high loadings. We also found that particle–particle collisions outnumbered particle–wall collisions

    Design of a Low‐Power Radio Frequency Unit and Its Application for Bacterial Inactivation under Laboratory Conditions

    Full text link
    A lab‐scale low‐power free‐running radio frequency (RF) oscillator operating at a frequency of 27.12 ± 0.50 MHz was developed to be suitable for fundamental microbiological research topics. Calibration and validation were conducted for two common foodborne pathogens in relevant microbiological growth media, i.e., Salmonella Typhimurium and Listeria monocytogenes in Tryptic Soy Broth and Brain–Heart Infusion broth, respectively. The evolution of temperature, frequency, and power consumption was monitored during treatments, both with and without bacterial cells. The setup operated within the predefined frequency range, reaching temperatures of 71–76 °C after 15 min. The average power consumption ranged between 12 and 14 W. The presence of bacteria did not significantly influence the operational parameters. The inactivation potential of the RF setup was validated, demonstrating the absence of viable cells after 8 and 10 min of treatment, for S. Typhimurium and L. monocytogenes, respectively. In future studies, the setup can be used to conduct fundamental microbiological studies on RF inactivation. The setup can provide added value to the scientific field, since (i) no consensus has been reached on the inactivation mechanisms of RF inactivation of pathogens in foods and (ii) most commercial RF setups are unsuitable to adopt for fundamental studies. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was funded by the KU Leuven Research Fund through project C24/18/046, by the Research Foundation Flanders (FWO) through project G0B4121N, and by the EU H2020 research and innovation program under the Marie Skłodowska‐Curie grant agreement no. 956126. Authors Davy Verheyen and Simen Akkermans were funded by the Research Foundation Flanders (FWO), grant numbers 1254421N and 1224620N, respectively

    State of the art of nonthermal and thermal processing for inactivation of micro-organisms

    Get PDF
    peer-reviewedDespite the constant development of novel thermal and nonthermal technologies, knowledge on the mechanisms of microbial inactivation is still very limited. Technologies such as high pressure, ultraviolet light, pulsed light, ozone, power ultrasound and cold plasma (advanced oxidation processes) have shown promising results for inactivation of micro-organisms. The efficacy of inactivation is greatly enhanced by combination of conventional (thermal) with nonthermal, or nonthermal with another nonthermal technique. The key advantages offered by nonthermal processes in combination with sublethal mild temperature (<60°C) can inactivate micro-organisms synergistically. Microbial cells, when subjected to environmental stress, can be either injured or killed. In some cases, cells are believed to be inactivated, but may only be sublethally injured leading to their recovery or, if the injury is lethal, to cell death. It is of major concern when micro-organisms adapt to stress during processing. If the cells adapt to a certain stress, it is associated with enhanced protection against other subsequent stresses. One of the most striking problems during inactivation of micro-organisms is spores. They are the most resistant form of microbial cells and relatively difficult to inactivate by common inactivation techniques, including heat sterilization, radiation, oxidizing agents and various chemicals. Various novel nonthermal processing technologies, alone or in combination, have shown potential for vegetative cells and spores inactivation. Predictive microbiology can be used to focus on the quantitative description of the microbial behaviour in food products, for a given set of environmental conditions

    The insecticide resistance status of malaria vectors in the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.</p> <p>Methods</p> <p>A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.</p> <p>Results</p> <p><it>Anopheles dirus s.s</it>., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, <it>Anopheles epiroticus </it>was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant <it>Anopheles minimus s.l</it>. populations were found, whereas <it>An. minimus s.l</it>. from Cambodia, Laos and Thailand were susceptible. Only two <it>An. minimus s.l</it>. populations showed DDT tolerance. <it>Anopheles vagus </it>was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.</p> <p>Conclusion</p> <p>This is the first large scale, cross-country survey of insecticide resistance in <it>Anopheles </it>species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.</p

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

    Get PDF
    BACKGROUND: In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. METHODS: Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. RESULTS: The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. CONCLUSION: The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed
    corecore