30 research outputs found

    Development and characterization of a human monoclonal antibody for prevention of HCV recurrence in liver transplant patients

    Get PDF
    More than 170 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing liver fibrosis, cirrhosis and hepatocellular carcinoma. Liver transplantation is the only option for patients with HCV-induced end-stage liver diseases. Nevertheless, infection of the newly grafted liver occurs immediately and universally after transplantation. Despite the recent progress in HCV therapy, a prophylactic vaccine is still not available. The role of neutralizing monoclonal antibodies (mAbs) in protection from different viral infections including HCV, HIV and Ebola has been reported. In the last few years, several mAbs with neutralizing activity have been described but only few mAbs have been evaluated in vivo. In the present study, we describe the development of a mAb, designated 2A5, isolated from HCV genotype 1b chronic patient. ELISA results indicated high affinity of mAb 2A5 towards HCV envelope glycoprotein (E1E2). The binding activity was completely lost against denatured E1E2 protein indicating that it targets a conformational epitope within the envelope region. Epitope mapping using alanine mutants of E1E2 proteins defined critical binding residues within the regions 419-447 and 612-617. Results of pseudoparticles (HCVpp) and cell culture produced virus (HCVcc) neutralization showed broad neutralizing activity of mAb 2A5 against all HCV genotypes. The efficacy study of mAb 2A5 in immune-deficient mice of which the liver is repopulated with human hepatocytes (humanized mice) showed complete protection from HCV challenge for genotypes 1a and 4a, while partial protection was achieved for genotypes 1b and 6a. Sequence analysis of E1E2 protein from non-protected mice did not revealed resistance mutations at interaction residues of mAb 2A5. In conclusion, mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence provide an effective strategy to prevent HCV recurrence in chronically infected HCV liver transplant patients. In addition, the broad neutralizing activity of this mAb presents a valuable epitope for the design of HCV vaccine with cross-protection activity

    A role for B cells to transmit hepatitis C virus infection

    Get PDF
    Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design

    Multicategorial Prefixed Words Stress Behaviour: Variation and Frequency

    Get PDF
    International audienceIn-depth analysis of intra- and inter-dialectal variation, and of the role of word frequenc

    Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1

    Get PDF
    Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine

    A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo

    Get PDF
    Infections with hepatitis C virus (HCV) represent a worldwide health burden and a prophylactic vaccine is still not available. Liver transplantation (LT) is often the only option for patients with HCV-induced end-stage liver disease. However, immediately after transplantation, the liver graft becomes infected by circulating virus, resulting in accelerated progression of liver disease. Although the effi cacy of HCV treatment using direct-acting antivirals has improved significantly, immune compromised LT-patients and patients with advanced liver disease remain difficult to treat. As an alternative approach, interfering with viral entry could prevent infection of the donor liver. We generated a human monoclonal antibody (mAb), designated 2A5, which targets the HCV envelope. The neutralizing activity of mAb 2A5 was assessed using multiple prototype and patient-derived HCV pseudoparticles (HCVpp), cell culture produced HCV (HCVcc), and a human-liver chimeric mouse model. Neutralization levels observed for mAb 2A5 were generally high and mostly superior to those obtained with AP33, a well-characterized HCV-neutralizing monoclonal antibody. Using humanized mice, complete protection was observed after genotype 1a and 4a HCV challenge, while only partial protection was achieved using gt1b and 6a isolates. Epitope mapping revealed that mAb 2A5 binding is conformation-dependent and identified the E2-region spanning amino acids 434 to 446 (epitope II) as the predominant contact domain. Conclusion : mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence represent a valuable candidate to prevent HCV recurrence in LT-patients. In addition, the detailed identification of the neutralizing epitope can be applied for the design of prophylactic HCV vaccines

    Answer to July-August e-quid. Breast filariasis

    No full text

    Is it possible to improve radiotherapy team members’ communication skills. A randomized study assessing the efficacy of a 38h communications skills training program

    Full text link
    Background and purpose: Optimizing communication between radiotherapy team members and patients and between colleagues requires training. This study applies a randomized controlled design to assess the efficacy of a 38-h communication skills training program. Material and methods: Four radiotherapy teams were randomly assigned either to a training program or to a waiting list. Team members’ communication skills and their self-efficacy to communicate in the context of an encounter with a simulated patient were the primary endpoints. These encounters were scheduled at the baseline and after training for the training group, and at the baseline and four months later for the waiting list group. Encounters were audiotaped and transcribed. Transcripts were analyzed with content analysis software (LaComm) and by an independent rater. Results: Eighty team members were included in the study. Compared to untrained team members, trained team members used more turns of speech with content oriented toward available resources in the team (relative rate [RR] = 1.38; p = 0.023), more assessment utterances (RR = 1.69; p < 0.001), more empathy (RR = 4.05; p = 0.037), more negotiation (RR = 2.34; p = 0.021) and more emotional words (RR = 1.32; p = 0.030), and their self-efficacy to communicate increased (p = 0.024 and p = 0.008, respectively). Conclusions: The training program was effective in improving team members’ communication skills and their self-efficacy to communicate in the context of an encounter with a simulated patient. Future study should assess the effect of this training program on communication with actual patients and their satisfaction. Moreover a cost-benefit analysis is needed, before implementing such an intensive training program on a broader scale
    corecore