3,285 research outputs found

    Evaluating the Impact of Local Differential Privacy on Utility Loss via Influence Functions

    Full text link
    How to properly set the privacy parameter in differential privacy (DP) has been an open question in DP research since it was first proposed in 2006. In this work, we demonstrate the ability of influence functions to offer insight into how a specific privacy parameter value will affect a model's test loss in the randomized response-based local DP setting. Our proposed method allows a data curator to select the privacy parameter best aligned with their allowed privacy-utility trade-off without requiring heavy computation such as extensive model retraining and data privatization. We consider multiple common randomization scenarios, such as performing randomized response over the features, and/or over the labels, as well as the more complex case of applying a class-dependent label noise correction method to offset the noise incurred by randomization. Further, we provide a detailed discussion over the computational complexity of our proposed approach inclusive of an empirical analysis. Through empirical evaluations we show that for both binary and multi-class settings, influence functions are able to approximate the true change in test loss that occurs when randomized response is applied over features and/or labels with small mean absolute error, especially in cases where noise correction methods are applied.Comment: 11 pages, 2 figure

    High Spatial Resolution Quantitative Imaging by Cross-calibration Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Synchrotron Micro-X-ray Fluorescence Technique

    Get PDF
    High spatial resolution, quantitative chemical imaging is of importance to various scientific communities, however high spatial resolution and robust quantification are not trivial to attain at the same time. In order to achieve microscopic chemical imaging with enhanced quantification capabilities, the current study links the independent and complementary advantages of two micro-analytical techniques – Synchrotron Radiation-based micro X-ray Fluorescence (SR-microXRF) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). A cross-calibration approach is established between these two techniques and validated by one experimental demonstration. In the presented test case, the diffusion pattern of trace level Cs migrating into a heterogeneous geological medium is imaged quantitatively with high spatial resolution. The one-dimensional line scans and the two-dimensional chemical images reveal two distinct types of geochemical domains: calcium carbonate rich domains and clay rich domains. During the diffusion, Cs shows a much higher interfacial reactivity within the clay rich domain, and turns out to be nearly non-reactive in the calcium carbonate domains. Such information obtained on the micrometer scale improves our chemical knowledge concerning reactive solute transport mechanism in heterogeneous media. Related to the chosen demonstration study, the outcome of the quantitative, microscopic chemical imaging contributes to a refined safety assessment of potential host rock materials for deep-geological nuclear waste storage repositories

    A lytic bacteriophage isolate reduced Clostridium perfringens induced lesions in necrotic enteritis challenged broilers

    Get PDF
    Background Bacteriophages are viral predators of bacteria and are common in nature. Their host-specific infections against specific bacteria make them an attractive natural agent to control bacterial pathogens. Interest in the potential of bacteriophages as antibacterial agents in the production animal industries has increased. Methods A total of 18 bacteriophages were isolated from Australian commercial poultry environments, from which three highly active phages were chosen for enrichment. Sequencing libraries were prepared using a Nextera XT kit (Illumina) and sequenced on an Illumina MiSeq instrument using 2 × 300 bp paired-end chemistry. The sequence data were then assembled and aligned with a2 bacteriophage as the reference. An animal trial was performed by oral gavaging Clostridium perfringens netB containing strain EHE-NE18 to the Ross 308 broiler chickens prior inoculation with Eimeria species. The chickens were raised following the management guide for Ross 308 from d 0 to d 21 and fed with starter and grower diets met the specific breed nutrient requirements. Body weight gain and feed intake were measured on d 9 and d 21 and FCR adjusted with mortality was calculated. Results The isolated bacteriophages only had only 96.7% similarity to the most closely related, previously characterized, Clostridium bacteriophage indicated that they might represent a novel strain of bacteriophage. A “cocktail” containing the three bacteriophages was capable of lysing four known disease-inducing C. perfringens strains in vitro. Oral administration of the bacteriophages cocktail to broilers challenged with necrotic enteritis markedly alleviated intestinal necrotic lesions in the duodenum and jejunum on day 16 post-hatch. The phage treatment significantly reduced the lesion scores of birds challenged with NE (P 0.05). However, no effect on the growth performance was observed during the recorded period of days 9-21. Conclusion These findings suggest that bacteriophage treatment is a promising approach to protect intestinal health from C. perfringens induced necrotic enteritis. Further research will be required on the dosing, route of administration, and large scale validation studies to further advance this approach to pathogen control

    Resolving the far-IR line deficit : photoelectric heating and far-IR line cooling in NGC 1097 and NGC 4559

    Get PDF
    The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the interstellar medium over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C II] 158 mu m, [O I] 63 mu m, and [N II] 122 mu m in NGC 1097 and NGC 4559, obtained with the Photodetector Array Camera & Spectrometer on board Herschel. We matched new observations to existing Spitzer Infrared Spectrograph data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C II] + [O I])/TIR, decreases as the far-infrared (far-IR) color, nu f(nu)(70 mu m) nu f(nu)(100 mu m), increases. In contrast, the ratio of far-IR cooling to total PAH emission, ([C II] + [O I])/PAH, is a near constant similar to 6% over a wide range of far-IR color, 0.5 , derived from models of the IR spectral energy distribution. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7/11.3 mu m PAH ratio in regions that exhibit a deficit in ([C II] + [O I])/PAH, suggesting that small grains are ionized in these environments

    Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

    Get PDF
    The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011), Ozone Monitoring Experiment [OMI] (since 2004) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002) total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3) data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3) data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies

    Astrophysically Motivated Bulge-Disk Decompositions of SDSS Galaxies

    Full text link
    We present a set of bulge-disk decompositions for a sample of 71,825 SDSS main-sample galaxies in the redshift range 0.003<z<0.05. We have fit each galaxy with either a de Vaucouleurs ('classical') or an exponential ('pseudo-') bulge and an exponential disk. Two dimensional Sersic fits are performed when the 2-component fits are not statistically significant or when the fits are poor, even in the presence of high signal-to-noise. We study the robustness of our 2-component fits by studying a bright subsample of galaxies and we study the systematics of these fits with decreasing resolution and S/N. Only 30% of our sample have been fit with two-component fits in which both components are non-zero. The g-r and g-i colours of each component for the two-component models are determined using linear templates derived from the r-band model. We attempt a physical classification of types of fits into disk galaxies, pseudo-bulges, classical bulges, and ellipticals. Our classification of galaxies agrees well with previous large B+D decomposed samples. Using our galaxy classifications, we find that Petrosian concentration is a good indicator of B/T, while overall Sersic index is not. Additionally, we find that the majority of green valley galaxies are bulge+disk galaxies. Furthermore, in the transition from green to red B+D galaxies, the total galaxy colour is most strongly correlated with the disk colour.Comment: 28 pages, 34 figures, MNRAS accepte

    The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy

    Get PDF
    We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The silicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correlation between the radiation field hardness and the PAH equivalent width or the 7.7um/11.3um PAH ratio. These results are based on spatially integrated diagnostics over an entire starburst region, and local variations may be ``averaged out''. It is presumably due to this effect that unresolved starburst nuclei with significantly different global properties appear spectrally as rather similar members of one class of objects.Comment: 22 pages, accepted for publication in ApJ, a high-resolution version is available from http://www.strw.leidenuniv.nl/~brandl/IRS_starbursts.pd
    corecore