175 research outputs found

    Extracting Diffusive States of Rho GTPase in Live Cells: Towards In Vivo Biochemistry

    Get PDF
    Resolving distinct biochemical interaction states when analyzing the trajectories of diffusing proteins in live cells on an individual basis remains challenging because of the limited statistics provided by the relatively short trajectories available experimentally. Here, we introduce a novel, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and demonstrate that pEM is capable of uncovering the proper number of underlying diffusive states with an accurate characterization of their diffusion properties. We then apply pEM to experimental protein trajectories of Rho GTPases, an integral regulator of cytoskeletal dynamics and cellular homeostasis, in vivo via single particle tracking photo-activated localization microscopy. Remarkably, pEM uncovers 6 distinct diffusive states conserved across various Rho GTPase family members. The variability across family members in the propensities for each diffusive state reveals non-redundant roles in the activation states of RhoA and RhoC. In a resting cell, our results support a model where RhoA is constantly cycling between activation states, with an imbalance of rates favoring an inactive state. RhoC, on the other hand, remains predominantly inactive

    The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion.

    Get PDF
    OBJECTIVE AND BACKGROUND: Activation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice. METHODS: Plasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury. RESULTS: In patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects. CONCLUSION: HMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage

    Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression

    Get PDF
    Introduction: Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis. Methods: To investigate the effects of loss of p190B function on mammary tumor progression, p190B heterozygous mice were crossed with an MMTV-Neu breast cancer model. Effects of p190B deficiency on tumor latency, multiplicity, growth, preneoplastic progression and metastasis were evaluated. To investigate potential differences in tumor angiogenesis between the two groups, immunohistochemistry to detect von Willebrand factor was performed and quantified. To examine gene expression of potential mediators of the angiogenic switch, an angiogenesis PCR array was utilized and results were confirmed using immunohistochemistry. Finally, reciprocal transplantation of tumor fragments was performed to determine the impact of stromal deficiency of p190B on tumor angiogenesis. Results: P190B deficiency reduced tumor penetrance (53% of p190B+/−Neup190B^{+/-}Neu mice vs. 100% of p190B+/+Neup190B^{+/+}Neu mice formed tumors) and markedly delayed tumor onset by an average of 46 weeks. Tumor multiplicity was also decreased, but an increase in the number of preneoplastic lesions was detected indicating that p190B deficiency inhibited preneoplastic progression. Angiogenesis was decreased in the p190B heterozygous tumors, and expression of a potent angiogenic inhibitor, thrombospondin-1, was elevated in p190B+/−Neup190B^{+/-}Neu mammary glands. Transplantation of p190B+/−Neup190B^{+/-}Neu tumor fragments into wild-type recipients restored tumor angiogenesis. Strikingly, p190B+/+Neup190B^{+/+}Neu tumor fragments were unable to grow when transplanted into p190B+/−Neup190B^{+/-}Neu recipients. Conclusions: These data suggest that p190B haploinsufficiency in the epithelium inhibits MMTV-Neu tumor initiation. Furthermore, p190B deficiency in the vasculature is responsible, in part, for the inhibition of MMTV-Neu tumor progression

    Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer

    Full text link
    Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer (LABC). The IBC phenotype is characterized by an infiltrative growth pattern, increased (lymph)angiogenesis and the propensity to invade dermal lymphatics. In pancreatic cancer, interactions between caveolin-1 and RhoC GTPase, a key molecule in causing the IBC phenotype, regulate tumour cell motility and invasion. In this study we sought to investigate the role of caveolin-1 and -2 in IBC cell lines and in human IBC samples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44235/1/10549_2005_Article_9002.pd

    Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells

    Get PDF
    INTRODUCTION: The metastatic progression of cancer is a direct result of the disregulation of numerous cellular signaling pathways, including those associated with adhesion, migration, and invasion. Members of the Rac family of small GTPases are known to act as regulators of actin cytoskeletal structures and strongly influence the cellular processes of integrin-mediated adhesion and migration. Even though hyperactivated Rac proteins have been shown to influence metastatic processes, these proteins have never been directly linked to metastatic progression. METHODS: To investigate a role for Rac and Cdc42 in metastatic breast cancer cell invasion and migration, relative endogenous Rac or Cdc42 activity was determined in a panel of metastatic variants of the MDA-MB-435 metastatic human breast cancer cell line using a p21-binding domain-PAK pull down assay. To investigate the migratory and invasive potential of the Rac isoforms in human breast cancer, namely Rac1 and the subsequently cloned Rac3, we stably expressed either dominant active Rac1 or dominant active Rac3 into the least metastatic cell variant. Dominant negative Rac1 or dominant negative Rac3 were stably expressed in the most metastatic cell variant. Cell lines expressing mutant Rac1 or Rac3 were analyzed using in vitro adhesion, migration and invasion assays. RESULTS: We show that increased activation of Rac proteins directly correlates with increasing metastatic potential in a panel of cell variants derived from a single metastatic breast cancer cell line (MDA-MB-435). The same correlation could not be found with activated Cdc42. Expression of a dominant active Rac1 or a dominant active Rac3 resulted in a more invasive and motile phenotype. Moreover, expression of either dominant negative Rac1 or dominant negative Rac3 into the most metastatic cell variant resulted in decreased invasive and motile properties. CONCLUSION: This study correlates endogenous Rac activity with high metastatic potential and implicates Rac in the regulation of cell migration and invasion in metastatic breast cancer cells. Taken together, these results suggest a role for both the Rac1 and Rac3 GTPases in human breast cancer progression

    Update on inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) is both the least frequent and the most severe form of epithelial breast cancer. The diagnosis is based on clinical inflammatory signs and is reinforced by pathological findings. Significant progress has been made in the management of IBC in the past 20 years. Yet survival among IBC patients is still only one-half that among patients with non-IBC. Identification of the molecular determinants of IBC would probably lead to more specific treatments and to improved survival. In the present article we review recent advances in the molecular pathogenesis of IBC. A more comprehensive view will probably be obtained by pan-genomic analysis of human IBC samples, and by functional in vitro and in vivo assays. These approaches may offer better patient outcome in the near future

    Multiple Signaling Pathways are Activated During Insulin-like Growth Factor-I (IGF-I) Stimulated Breast Cancer Cell Migration

    Full text link
    In order to display the full metastatic phenotype, the cancer cell must acquire the ability to migrate. In breast cancer, we have previously shown that insulin-like growth factor I (IGF-I) enhances cell motility in the highly metastatic MDA-231BO cell line by activating the type I IGF receptor (IGF1R). This motility response requires activation of IRS-2 and integrin ligation. In order to identify the key molecules downstream of IRS-2, we examined several signaling pathways known to be involved in cell motility. Focal adhesion kinase (FAK) was not activated by IGF-I, but IGF-I caused redistribution of FAK away from focal adhesion plaques. IGF-I treatment of MDA-231BO cells activated RhoA and inhibition of Rho-kinase (ROCK) inhibited the IGF-mediated motility response. The mitogen activated protein kinase (MAPK), p38, was also activated by IGF-I and inhibition of p38 by SB203580 blocked IGF-I induced cell motility. ROCK inhibition with Y-27632 also inhibited p38 phosphorylation suggesting that p38 lies downstream of ROCK. Both Erk1,2 and phosphatidyl-3 kinase (PI3K) were required for IGF-I stimulated cell motility, but only PI3K appeared to be directly downstream of IGF-I. Thus, IGF-I activation of its receptor coordinates multiple signaling pathways required for cell motility. Defining the key molecules downstream of the type I IGF receptor may provide a basis for optimizing therapies directed at this target.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44233/1/10549_2005_Article_4626.pd

    Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    Get PDF
    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli.ClinicalTrials.gov NCT00626080

    Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): analysis of 2,014 IBC patient cases from the California Cancer Registry

    Get PDF
    IntroductionInflammatory breast cancer (IBC) is an aggressive form of breast cancer associated with overexpression of Her2/Neu (human epidermal growth factor-like receptor 2 (HER2)) and poor survival. We investigated survival differences for IBC patient cases based on hormone receptor status and HER2 receptor status using data from the California Cancer Registry, as contrasted with locally advanced breast cancer (LABC), metastatic breast cancer (MBC) and non-T4 breast cancer.MethodsA case-only analysis of 80,099 incident female breast cancer patient cases in the California Cancer Registry during 1999 to 2003 was performed, with follow-up through March 2007. Overall survival (OS) and breast cancer-specific survival (BC-SS) were analyzed using Kaplan-Meier methods and Cox proportional hazards ratios.ResultsA total of 2,014 IBC, 1,268 LABC, 3,059 MBC, and 73,758 non-T4 breast cancer patient cases were identified. HER2+ was associated with advanced tumor stage (P < 0.0001). IBC patient cases were more likely to be HER2+ (40%) and less likely to be hormone receptor-positive (HmR+) (59%) compared with LABC (35% and 69%, respectively), MBC (35% and 74%), and non-T4 patient cases (22% and 82%). HmR+ status was associated with improved OS and BC-SS for each breast cancer subtype after adjustment for clinically relevant factors. In multivariate analysis, HER2+ (versus HER2-) status was associated with poor BC-SS for non-T4 patient cases (hazards ratio = 1.16, 95% confidence interval 1.05 to 1.28) and had a borderline significant association with improved BC-SS for IBC (hazards ratio = 0.82, 95% confidence interval = 0.68 to 0.99).ConclusionsDespite an association with advanced tumor stage, HER2+ status is not an independent adverse prognostic factor for survival among IBC patient cases
    • …
    corecore