384 research outputs found

    The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation

    Get PDF
    We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four modes of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode (BAM), the southern annular mode (SAM), and the two Pacific-South American (PSA) teleconnection patterns. Variations in all four modes influence the spatial patterns of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability, but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone

    Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods

    Get PDF
    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009–10, 2010–11 and 2009–11. The average compaction rate to ∼25 m depth is 0.33 m a–1, with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12 m a–1 over distances 20% larger during the 2010–11 interval than during 2009–10

    A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015)

    Get PDF
    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements

    High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data

    Get PDF
    We show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB: mean 1979–2012 SMB (± standard deviation), in Gt a−1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s

    Firn air content changes on Antarctic ice shelves under three future warming scenarios

    Get PDF
    The Antarctic firn layer provides pore space in which an estimated 94% to 96% of the surface melt refreezes or is retained as liquid water. Future depletion of firn pore space by increased surface melt, densification and formation of low-permeability ice slabs can potentially lead to meltwater ponding, hydrofracturing and ice-shelf disintegration. Here, we investigate the 21st-century evolution of total firn air content (FAC) and accessible FAC (i.e. the pore space that meltwater can reach) across Antarctic ice shelves. We use the semi-empirical IMAU Firn Densification Model (IMAU-FDM) with an updated dynamical densification expression to cope with changing climate forcing. The firn model is forced by general circulation model output of the Community Earth System Model version 2 (CESM2) for three climate emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5), dynamically downscaled to a 27km horizontal resolution by the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2). To estimate accessible FAC, we prescribe a relationship between ice-slab thickness and permeability. In our simulations, ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total FAC depletion (>50% decrease by 2100), even for low-emission (SSP1-2.6) and intermediate-emission (SSP2-4.5) scenarios. In the high-emission (SSP5-8.5) scenario in particular, the formation of ice slabs further reduces accessible FAC on ice shelves with low accumulation rates (current rates of <500mmw.e.yr-1), including many East Antarctic ice shelves and the Filchner-Ronne, Ross, Pine Island and Larsen C ice shelves. These results underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice-slab formation

    Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution

    Get PDF
    Antarctic ice sheet (AIS) mass loss is predominantly driven by increased solid ice discharge, but its variability is governed by surface processes. Snowfall fluctuations control the surface mass balance (SMB) of the grounded AIS, while meltwater ponding can trigger ice shelf collapse potentially accelerating discharge. Surface processes are essential to quantify AIS mass change, but remain poorly represented in climate models typically running at 25-100 km resolution. Here we present SMB and surface melt products statistically downscaled to 2 km resolution for the contemporary climate (1979-2021) and low, moderate and high-end warming scenarios until 2100. We show that statistical downscaling modestly enhances contemporary SMB (3%), which is sufficient to reconcile modelled and satellite mass change. Furthermore, melt strongly increases (46%), notably near the grounding line, in better agreement with in-situ and satellite records. The melt increase persists by 2100 in all warming scenarios, revealing higher surface melt rates than previously estimated.High-resolution 2-km Antarctic maps reveal higher snowfall and surface melt than low-resolution products, reconciling satellite-observed ice sheet mass change. Projected higher surface melt near grounding lines threatens future ice shelf stability

    La culture du vanillier

    Get PDF
    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of −0.9 ± 1.1 m yr−2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow

    Интернационализация подготовки научных кадров в развитых европейских странах:проблемы и уроки

    Get PDF
    Показаны формы международного сотрудничества в рамках интернационализации докторского образования, стратегии интернационализации высшего образования в целом и докторского в частности. Описан накопленный опыт, сформулированы основные уроки и полезные идеи, вытекающие из него.Показано форми міжнародного співробітництва у рамках інтернаціоналізації докторської освіти, стратегії інтернаціоналізації вищої освіти загалом та докторської зокрема. Описано накопичений досвід, сформульовано основні уроки та корисні ідеї, що випливають з нього.Forms of international cooperation in internationalization of doctoral education, strategies of internationalization in higher education in general and doctoral education in particular are shown. Experiences accumulated in this field are described; main lessons and useful ideas born from the experiences are outlined

    Recent surface mass balance from Syowa Station to Dome F, East Antarctica: comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model

    Get PDF
    Stake measurements at 2 km intervals are used to determine the spatial and temporal surface mass balance (SMB) in recent decades along the Japanese Antarctic Research Expedition traverse route from Syowa Station to Dome F. To determine SMB variability at regional scales, this traverse route is divided into four regions, i.e., coastal, lower katabatic, upper katabatic and inland plateau. We also perform a regional evaluation of large scale SMB simulated by the regional atmospheric climate model versions 2.1 and 2.3 (RACMO2.1 and RACMO2.3), and the four more recent global reanalyses. Large-scale spatial variability in the multi-year averaged SMB reveals robust relationships with continentality and surface elevation. In the katabatic regions, SMB variability is also highly associated with surface slope, which in turn is affected by bedrock topography. Stake observation records show large inter-annual variability in SMB, but did not indicate any significant trends over both the last 40 years for the coastal and lower katabatic regions, and the last 20 years record for the upper katabatic and inland plateau regions. The four reanalyses and the regional climate model reproduce the macro-scale spatial pattern well for the multi-year averaged SMB, but fail to capture the mesoscale SMB increase at the distance interval ~300 to ~400 km from Syowa station. Thanks to the updated scheme in the cloud microphysics, RACMO2.3 shows the best spatial agreement with stake measurements over the inland plateau region. ERA-interim, JRA-55 and MERRA exhibit high agreement with the inter-annual variability of observed SMB in the coastal, upper katabatic and inland plateau regions, and moderate agreement in the lower katabatic region, while NCEP2 and RACMO2.1 inter-annual variability shows no significant correlation with the observations for the inland plateau region
    corecore