33 research outputs found
Cost estimation for remanufacture with limited and uncertain information using case based reasoning
Assessing products prior to remanufacture is an important part of the remanufacturing
process, ensuring that unsuitable cores are removed at an early stage to avoid
unnecessary processing. In particular, understanding the economic cost of
remanufacturing a product can be an important aspect of the assessment, especially for
businesses operating in low volumes and on high value products, where the risk
associated with unexpected costs or failure to complete remanufacture are much
greater. Estimating these costs can however be difficult, as important information
required to make a prediction is often uncertain, such as the product design, its
condition and also the understanding of the resource requirements for remanufacture.
Within this research a method has been developed to estimate the economic cost and
risks of conducting a remanufacturing activity to a product when information is
uncertain. Summation of the individual activities can then be conducted to
determine the economic cost and risks of the entire remanufacturing process.
The method utilises a combination of case based reasoning and probability theory to
identify similarities between historical data records and the product under assessment,
to predict the cost and risks of remanufacture. In particular this method enables cost
estimation when important product information is missing including the manufacturer,
model or condition. Additionally estimates can be made when exact historical
information is not present, which can be useful to business remanufacturing
bespoke or rare products. The method is then implemented within a service
oriented architecture and functionally demonstrated using an example of an
independent wind turbine gearbox remanufacturer
Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset
© 2015 Luo et al. For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease
Leveraging analytics to produce compelling and profitable film content
Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user generated content and original content produced by Subscription Video on Demand (SVOD) platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
© 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
The Usability of E-learning Platforms in Higher Education: A Systematic Mapping Study
The use of e-learning in higher education has increased significantly in recent years, which has led to several studies being conducted to investigate the usability of the platforms that support it. A variety of different usability evaluation methods and attributes have been used, and it has therefore become important to start reviewing this work in a systematic way to determine how the field has developed in the last 15 years. This paper describes a systematic mapping study that performed searches on five electronic libraries to identify usability issues and methods that have been used to evaluate e-learning platforms. Sixty-one papers were selected and analysed, with the majority of studies using a simple research design reliant on questionnaires. The usability attributes measured were mostly related to effectiveness, satisfaction, efficiency, and perceived ease of use. Furthermore, several research gaps have been identified and recommendations have been made for further work in the area of the usability of online learning