18 research outputs found

    CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials

    Get PDF
    Background Several treatment approaches in cystic fibrosis (CF) aim to correct CF transmembrane conductance regulator (CFTR) function; the efficacy of each approach is dependent on the mutation(s) present. A need remains for more effective treatments to correct functional deficits caused by the F508del mutation. Methods Two placebo-controlled, phase 2a studies evaluated GLPG2222, given orally once daily for 29 days, in subjects homozygous for F508del (FLAMINGO) or heterozygous for F508del and a gating mutation, receiving ivacaftor (ALBATROSS). The primary objective of both studies was to assess safety and tolerability. Secondary objectives included assessment of pharmacokinetics, and of the effect of GLPG2222 on sweat chloride concentrations, pulmonary function and respiratory symptoms. Results Fifty-nine and 37 subjects were enrolled into FLAMINGO and ALBATROSS, respectively. Treatment-related treatment-emergent adverse events (TEAEs) were reported by 29.2% (14/48) of subjects in FLAMINGO and 40.0% (12/30) in ALBATROSS; most were mild to moderate in severity and comprised primarily respiratory, gastrointestinal, and infection events. There were no deaths or discontinuations due to TEAEs. Dose-dependent decreases in sweat chloride concentrations were seen in GLPG2222-treated subjects (maximum decrease in FLAMINGO: –17.6 mmol/L [GLPG2222 200 mg], p < 0.0001; ALBATROSS: –7.4 mmol/L [GLPG2222 300 mg], p < 0.05). No significant effects on pulmonary function or respiratory symptoms were reported. Plasma GLPG2222 concentrations in CF subjects were consistent with previous studies in healthy volunteers and CF subjects. Conclusions GLPG2222 was well tolerated. Sweat chloride reductions support on-target enhancement of CFTR activity in subjects with F508del mutation(s). Significant improvements in clinical endpoints were not demonstrated. Observed safety results support further evaluation of GLPG2222, including in combination with other CFTR modulators. Funding Galapagos NV. Clinical trial registration numbers FLAMINGO, NCT03119649; ALBATROSS, NCT0304552

    Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19

    Get PDF
    The disease course of COVID-19 in patients with immunodeficiencies is unclear, as well as the optimal therapeutic strategy. We report a case of a 37-year old male with common variable immunodeficiency disorder and a severe SARS-CoV-2 infection. After administration of convalescent plasma, the patient’s condition improved rapidly. Despite clinical recovery, viral RNA remained detectable up to 60 days after onset of symptoms. We propose that convalescent plasma might be considered as a treatment option in patients with CVID and severe COVID-19. In addition, in patients with immunodeficiencies, a different clinical course is possible, with prolonged viral shedding

    X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19

    Get PDF
    Publisher Copyright: Copyright © 2021Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean, 36.7 years) from a cohort of 1202 male patients aged 0.5 to 99 years (mean, 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean, 38.7 years) tested carry such TLR7 variants (P = 3.5 × 10−5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n = 2) or moderate (n = 1), severe (n = 1), or critical (n = 1) pneumonia. Two patients from a cohort of 262 male patients with severe COVID-19 pneumonia (mean, 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is <6.5 × 10−4. We show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7. The patients’ blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.Peer reviewe

    Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019

    No full text
    corecore