14 research outputs found

    Seawater cadmium in the Florida Straits over the Holocene and implications for Upper AMOC variability

    Get PDF
    Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS)

    Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

    Get PDF
    Both gold-rich sulphides and ultra-high grade native gold oreshoots are common but poorly understood phenomenon in orogenic-type mineral systems, partly because fluids in these systems are considered to have relatively low gold solubilities and are unlikely to generate high gold concentrations. The world-class Obuasi gold deposit, Ghana, has gold-rich arsenopyrite spatially associated with quartz veins, which have extremely high, localised concentrations of native gold, contained in microcrack networks within the quartz veins where they are folded. Here, we examine selected samples from Obuasi using a novel combination of quantitative electron backscatter diffraction analysis, ion microprobe imaging, synchrotron XFM mapping and geochemical modelling to investigate the origin of the unusually high gold concentrations. The auriferous arsenopyrites are shown to have undergone partial replacement (~15%) by Au-poor, nickeliferous arsenopyrite, during localised crystal-plastic deformation, intragranular microfracture and metamorphism (340-460 °C, 2 kbars). Our results show the dominant replacement mechanism was pseudomorphic dissolution-reprecipitation, driven by small volumes of an infiltrating fluid that had relatively low fS2 and carried aqueous NiCl2. We find that arsenopyrite replacement produced strong chemical gradients at crystal-fluid interfaces due to an increase in fS2 during reaction, which enabled efficient removal of gold to the fluid phase and development of anomalously gold-rich fluid (potentially 10 ppm or more depending on sulphur concentration). This process was facilitated by precipitation of ankerite, which removed CO2 from the fluid, increasing the relative proportion of sulphur for gold complexation and inhibited additional quartz precipitation. Gold re-precipitation occurred over distances of 10 µm to several tens of metres and was likely a result of sulphur activity reduction through precipitation of pyrite and other sulphides. We suggest this late remobilisation process may be relatively common in orogenic belts containing abundant mafic/ultramafic rocks, which act as a source of Ni and Co scavenged by chloride-bearing fluids. Both the preference of the arsenopyrite crystal structure for Ni and Co, rather than gold, and the release of sulphur during reaction, can drive gold remobilisation in many deposits across broad regions

    The formation of garnet in olivine-bearing metagabbros from the Adirondacks

    Full text link
    A regional study of olivine-bearing metagabbros in the Adirondacks has permitted testing of the P(pressure)-T(temperature)-X(composition) dependence of garnet-forming reactions as well as providing additional regional metamorphic pressure data. Six phases, olivine, orthopyroxene, clinopyroxene, garnet, plagioclase and spinel, which can be related by the reactions: orthopyroxene+clinopyroxene+spinel +anorthite=garnet, and forsterite+anorthite=garnet occur together both in coronal and in equant textures indicative of equilibrium. Compositions of the respective minerals are typically Fo 25–72 , En 44–75 , En 30–44 Fs 9–23 Wo 47–49 , Pp 13–42 Alm 39–63 Gr 16–20 , An 29–49 and Sp 16–58 . When they occur in the same rock, equant and coronal garnets are homogeneous and compositionally identical suggesting that chemical equilibrium may have been attained despite coronal textures. Extrapolating reactions in the simple CMAS system to granulite temperatures and making thermodynamic corrections for solid solutions gives equilibration pressures (using the thermometry of Bohlen et al. 1980b) ranging from about 6.5 kb in the Lowlands and southern Adirondacks to 7.0–8.0 kb in the Highlands for the assemblage olivine-plagioclase-garnet. These results are consistent with inferred peak metamorphic conditions in the Adirondacks (Valley and Bohlen 1979; Bohlen and Boettcher 1981). Thus the isobaric retrograde path suggested by Whitney and McLelland (1973) and Whitney (1978) for the formation of coronal garnet in olivine metagabbros may not be required. Application of the same equilibria gives >8.7 kb for South Harris, Scotland and 0.9 kb for the Nain Complex. Disagreement of the latter value with orthopyroxeneolivine-quartz barometry (Bohlen and Boettcher 1981) suggests that the use of iron-rich rocks (olivines ≧Fa 50 ) results in errors in calculated pressures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47335/1/410_2004_Article_BF00371301.pd

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp

    Silicate melts during Earth's core formation

    No full text
    corecore