195 research outputs found

    Quantum Cost Optimization for Reversible Sequential Circuit

    Full text link
    Reversible sequential circuits are going to be the significant memory blocks for the forthcoming computing devices for their ultra low power consumption. Therefore design of various types of latches has been considered a major objective for the researchers quite a long time. In this paper we proposed efficient design of reversible sequential circuits that are optimized in terms of quantum cost, delay and garbage outputs. For this we proposed a new 3*3 reversible gate called SAM gate and we then design efficient sequential circuits using SAM gate along with some of the basic reversible logic gates.Comment: Quantum 4.12 (2013). arXiv admin note: substantial text overlap with arXiv:1312.735

    Fostering Organizational Integrity through Departmental Program Reviews

    Get PDF
    Conducting a departmental program review can be a stressful and arduous process. At the same time, the final report can provide valuable insights. The challenges and benefits of program reviews have been well noted by scholars. We seek to add to this conversation by arguing that program reviews can prove beneficial by fostering and maintaining organizational integrity. In our essay, we review relevant literature on program reviews, provide an explanation of organizational integrity, present a narrative of our program review process, and explain how this process fostered organizational integrity

    Evidence from Polymict Ureilite Meteorites for a Single "Rubble-Pile" Ureilite Parent Asteroid Gardened by Several Distinct Impactors

    Get PDF
    Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a statistically identical range of compositions to that shown by all known monomict ureilites. This is considered to be convincing evidence for derivation from a single parent asteroid. Many of the polymict ureilites also contain clasts that have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the Hughes cluster ). Four of the six samples also contain distinctive ferroan lithic clasts that have been derived from oxidized impactors. The presence of several common distinctive lithologies within the polymict ureilites is additional evidence that the ureilites were derived from a single parent asteroid. Olivine in a large lithic clast of augite-bearing ureilitic has an mg# of 97, extending the compositional range of known ureilite material. Our study confirms that ureilitic olivine clasts with mg#s 85, which also show more variable Mn contents, including the melt-inclusion bearing "Hughes cluster" ureilites. We interpret this to indicate that the parent ureilite asteroid was disrupted by a major impact at a time when melt was still present in regions with a bulk mg# > 85, giving rise to the two types of ureilites: common ferroan ones that were already residual after melting and less common magnesian ones that were still partially molten when disruption occurred, some of which are the result of interaction of melts with residual mantle during disruption. A single daughter asteroid re-accreted from the disrupted remnants of the mantle of the proto-ureilite asteroid, giving rise to a "rubble-pile" body that had material of a wide variety of compositions and shock states present on its surface. The analysed polymict ureilite meteorites represent regolith that subsequently formed on this asteroidal surface, including impact-derived material from at least six different meteoritic sources

    CMOS compatible integrated all-optical radio frequency spectrum analyzer

    Get PDF
    We report an integrated all-optical radio frequency spectrum analyzer based on a ~4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahighrepetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other technique

    The Canada-UK Deep Submillimetre Survey: The Survey of the 14-hour field

    Full text link
    We have used SCUBA to survey an area of 50 square arcmin, detecting 19 sources down to a 3sigma sensitivity limit of 3.5 mJy at 850 microns. We have used Monte-Carlo simulations to assess the effect of source confusion and noise on the SCUBA fluxes and positions, finding that the fluxes of sources in the SCUBA surveys are significantly biased upwards and that the fraction of the 850 micron background that has been resolved by SCUBA has been overestimated. The radio/submillmetre flux ratios imply that the dust in these galaxies is being heated by young stars rather than AGN. We have used simple evolution models based on our parallel SCUBA survey of the local universe to address the major questions about the SCUBA sources: (1) what fraction of the star formation at high redshift is hidden by dust? (2) Does the submillimetre luminosity density reach a maximum at some redshift? (3) If the SCUBA sources are proto-ellipticals, when exactly did ellipticals form? However, we show that the observations are not yet good enough for definitive answers to these questions. There are, for example, acceptable models in which 10 times as much high-redshift star formation is hidden by dust as is seen at optical wavelengths, but also acceptable ones in which the amount of hidden star formation is less than that seen optically. There are acceptable models in which very little star formation occurred before a redshift of three (as might be expected in models of hierarchical galaxy formation), but also ones in which 30% of the stars have formed by this redshift. The key to answering these questions are measurements of the dust temperatures and redshifts of the SCUBA sources.Comment: 41 pages (latex), 17 postscript figures, to appear in the November issue of the Astronomical Journa

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    The X-ray luminosity function and number counts of spiral galaxies

    Full text link
    (abridged) A detailed comparison is performed of the LFs compiled at infrared, radio and optical wavelengths and converted into XLFs using available relations with the XLF directly estimated in the 0.5--2 keV energy band from X-ray surveys (Norman et al). We find that the XLF from the local sample of IRAS galaxies (Takeuchi et al) provides a good representation of all available data samples; pure luminosity evolution of the form (1+z)^\eta, with \eta< ~3, is favoured over pure density. The local X-ray luminosity density is also well defined. We discuss different estimates of the galaxies LogN-LogS, selected from the Chandra Deep Fields with different selection criteria: these have similar slopes, but normalisations scattered within a factor ~2, of the same order of the Poissonian error on the counts. We compare the observed LogN-LogS with the counts predicted by integrating our reference z=0 XLF. By using number counts alone, it is not possible to discriminate between density and luminosity evolution; however, the evolution of galaxies must be stopped in both cases at z~1-2. The contribution of galaxies to the X-ray background is found to be in the range 6%--12%. Making use of cosmic star formation models, we find that the X-ray LogN-LogS might be not compatible with very large star formation rates at z ~ 3 as suggested by sub-mm observations in Blain et al. 1999. As to the content of current and, possibly, future X-ray surveys, we determine the fraction of galaxies around the current flux limit: (30+-12 %). At fainter fluxes the fraction of galaxies will probably rise, and overcome the counts from AGN at fluxes < ~10^{-17} erg/s/cm^2.Comment: LaTeX, 16 pages, 10 figures. Accepted by Astronomy and Astrophysic

    Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

    Get PDF
    Both gold-rich sulphides and ultra-high grade native gold oreshoots are common but poorly understood phenomenon in orogenic-type mineral systems, partly because fluids in these systems are considered to have relatively low gold solubilities and are unlikely to generate high gold concentrations. The world-class Obuasi gold deposit, Ghana, has gold-rich arsenopyrite spatially associated with quartz veins, which have extremely high, localised concentrations of native gold, contained in microcrack networks within the quartz veins where they are folded. Here, we examine selected samples from Obuasi using a novel combination of quantitative electron backscatter diffraction analysis, ion microprobe imaging, synchrotron XFM mapping and geochemical modelling to investigate the origin of the unusually high gold concentrations. The auriferous arsenopyrites are shown to have undergone partial replacement (~15%) by Au-poor, nickeliferous arsenopyrite, during localised crystal-plastic deformation, intragranular microfracture and metamorphism (340-460 °C, 2 kbars). Our results show the dominant replacement mechanism was pseudomorphic dissolution-reprecipitation, driven by small volumes of an infiltrating fluid that had relatively low fS2 and carried aqueous NiCl2. We find that arsenopyrite replacement produced strong chemical gradients at crystal-fluid interfaces due to an increase in fS2 during reaction, which enabled efficient removal of gold to the fluid phase and development of anomalously gold-rich fluid (potentially 10 ppm or more depending on sulphur concentration). This process was facilitated by precipitation of ankerite, which removed CO2 from the fluid, increasing the relative proportion of sulphur for gold complexation and inhibited additional quartz precipitation. Gold re-precipitation occurred over distances of 10 µm to several tens of metres and was likely a result of sulphur activity reduction through precipitation of pyrite and other sulphides. We suggest this late remobilisation process may be relatively common in orogenic belts containing abundant mafic/ultramafic rocks, which act as a source of Ni and Co scavenged by chloride-bearing fluids. Both the preference of the arsenopyrite crystal structure for Ni and Co, rather than gold, and the release of sulphur during reaction, can drive gold remobilisation in many deposits across broad regions
    corecore