13 research outputs found

    Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke

    Full text link
    BACKGROUND AND PURPOSE: Translational research is beginning to reveal the importance of trophic factors as a therapy for cellular brain repair. The purpose of this study was to analyze whether brain-derived neurotrophic factor (BDNF) administration could mediate oligodendrogenesis and remyelination after white matter injury in subcortical stroke. METHODS: Ischemia was induced in rats by injection of endothelin-1. At 24 hours, 0.4 μg/kg of BDNF or saline was intravenously administered to the treatment and control groups, respectively. Functional evaluation, MRI, and fiber tract integrity on tractography images were analyzed. Proliferation (KI-67) and white matter repair markers (A2B5, 2',3'-cyclic-nucleotide 3'-phosphodiesterase [CNPase], adenomatous polyposis coli [APC], platelet-derived growth factor receptor alpha [PDGFR-α], oligodendrocyte marker O4 [O4], oligodendrocyte transcription factor [Olig-2], and myelin basic protein [MBP]) were analyzed at 7 and 28 days. RESULTS: The BDNF-treated animals showed less functional deficit at 28 days after treatment than the controls (P<0.05). Although T2-MRI did not show differences in lesion size at 7 and 28 days between groups, diffusion tensor imaging tractography analysis revealed significantly better tract connectivity at 28 days in the BDNF group than in the controls (P<0.05). Increased proliferation of oligodendrocyte progenitors was observed in treated animals at 7 days (P<0.05). Finally, the levels of white matter repair markers (A2B5, CNPase, and O4 at 7 days; Olig-2 and MBP at 28 days) were higher in the BDNF group than in the controls (P<0.05). CONCLUSIONS: BDNF administration exerted better functional outcome, oligodendrogenesis, remyelination, and fiber connectivity than controls in rats subjected to subcortical damage in ischemic strokeSupported by research grants PS12/01754 (P.I.: EDT), INVICTUS Spanish Neurovascular Network RD12/0014/0006 (BRF and JRC) and Sara Borrell postdoctoral fellowship CD12/00706 (LOO) from the Research Institute Carlos III, Ministry of Science and Innovation of Spai

    Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://stemcellres.com/content/4/1/11Introduction: Stem cell therapy can promote good recovery from stroke. Several studies have demonstrated that mesenchymal stem cells (MSC) are safe and effective. However, more information regarding appropriate cell type is needed from animal model. This study was targeted at analyzing the effects in ischemic stroke of acute intravenous (i.v.) administration of allogenic bone marrow- (BM-MSC) and adipose-derived-stem cells (AD-MSC) on functional evaluation results and brain repair markers. Methods: Allogenic MSC (2 × 106 cells) were administered intravenously 30 minutes after permanent middle cerebral artery occlusion (pMCAO) to rats. Infarct volume and cell migration and implantation were analyzed by magnetic resonance imaging (MRI) and immunohistochemistry. Function was evaluated by the Rogers and rotarod tests, and cell proliferation and cell-death were also determined. Brain repair markers were analyzed by confocal microscopy and confirmed by western blot. Results: Compared to infarct group, function had significantly improved at 24 h and continued at 14 d after i.v. administration of either BM-MSC or AD-MSC. No reduction in infarct volume or any migration/implantation of cells into the damaged brain were observed. Nevertheless, cell death was reduced and cellular proliferation significantly increased in both treatment groups with respect to the infarct group. At 14 d after MSC administration vascular endothelial growth factor (VEGF), synaptophysin (SYP), oligodendrocyte (Olig-2) and neurofilament (NF) levels were significantly increased while those of glial fiibrillary acid protein (GFAP) were decreased. Conclusions: i.v. administration of allogenic MSC - whether BM-MSC or AD-MSC, in pMCAO infarct was associated with good functional recovery, and reductions in cell death as well as increases in cellular proliferation, neurogenesis, oligodendrogenesis, synaptogenesis and angiogenesis markers at 14 days post-infarctThis study was supported by grants from Cellerix, FIS 060575 and PS09/ 01606 (Spanish Ministry of Science), CIDEM (Center for Innovation and Business Development) and by RENEVAS (RD07/0026/2003) (Spanish Neurovascular Network), the Carlos III Research Institute and the Ministry of Science and Innovatio

    Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: Proof of concept in rats

    Get PDF
    Background: Rat adipose tissue-derived-mesenchymal stem cells (rAD-MSCs) have proven to be safe in experimental animal models of stroke. However, in order to use human AD-MSCs (hAD-MSCs) as a treatment for stroke patients, a proof of concept is needed. We analyzed whether the xenogeneic hAD-MSCs were as safe and effective as allogeneic rAD-MSCs in permanent Middle Cerebral Artery Occlusion (pMCAO) in rats. Methods: Sprague–Dawley rats were randomly divided into three groups, which were intravenously injected with xenogeneic hAD-MSCs (2 × 106), allogeneic rAD-MSCs (2 × 106) or saline (control) at 30 min after pMCAO. Behavior, cell implantation, lesion size and cell death were evaluated. Brain markers such as GFAP (glial fibrillary acid protein), VEGF (vascular endothelial growth factor) and SYP (synaptophysin) and tumor formation were analyzed. Results: Compared to controls, recovery was significantly better at 24 h and continued to be so at 14 d after IV administration of either hAD-MSCs or rAD-MSCs. No reduction in lesion size or migration/implantation of cells in the damaged brain were observed in the treatment groups. Nevertheless, cell death was significantly reduced with respect to the control group in both treatment groups. VEGF and SYP levels were significantly higher, while those of GFAP were lower in the treated groups. At three months, there was no tumor formation. Conclusions: hAD-MSCs and rAD-MSCs were safe and without side effects or tumor formation. Both treatment groups showed equal efficacy in terms of functional recovery and decreased ischemic brain damage (cell death and glial scarring) and resulted in higher angiogenesis and synaptogenesis marker levelsThis research was supported by research grants FIS06/0575, FIS09/01606, FIS12/01754 and INVICTUS (RD12/0014/0006) (Spanish Neurovascular Network), Cellerix, and Research Institute Carlos III, Ministry of Science and Innovation of Spain

    BML‐111 treatment prevents cardiac apoptosis and oxidative stress in a mouse model of autoimmune myocarditis.

    Get PDF
    Myocarditis is an inflammation of the myocardium that can progress to a more severe phenotype of dilated cardiomyopathy (DCM). Three main harmful factors determine this progression: inflammation, cell death, and oxidative stress. Lipoxins and their derivatives are endogenous proresolving mediators that induce the resolution of the inflammatory process. This study aims to determine whether these mediators play a protective role in a murine model of experimental autoimmune myocarditis (EAM) by treating with the lipoxin A4 analog BML‐111. We observed that EAM mice presented extensive infiltration areas that correlated with higher levels of inflammatory and cardiac damage markers. Both parameters were significantly reduced in BML‐treated EAM mice. Consistently, cardiac dysfunction, hypertrophy, and emerging fibrosis detected in EAM mice was prevented by BML‐111 treatment. At the molecular level, we demonstrated that treatment with BML‐111 hampered apoptosis and oxidative stress induction by EAM. Moreover, both in vivo and in vitro studies revealed that these beneficial effects were mediated by activation of Nrf2 pathway through CaMKK2‐AMPKα kinase pathway. Altogether, our data indicate that treatment with the lipoxin derivative BML‐111 effectively alleviates EAM outcome and prevents cardiac dysfunction, thus, underscoring the therapeutic potential of lipoxins and their derivatives to treat myocarditis and other inflammatory cardiovascular diseases.pre-print325 K

    Specialized proresolving mediators protect against experimental autoimmune myocarditis by modulating Ca2+ handling and NRF2 activation

    Get PDF
    Preclinical research[Abstract] Specialized proresolving mediators and, in particular, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester (BML-111) emerge as new therapeutic tools to prevent cardiac dysfunction and deleterious cardiac damage associated with myocarditis progression. The cardioprotective role of BML-111 is mainly caused by the prevention of increased oxidative stress and nuclear factor erythroid-derived 2-like 2 (NRF2) down-regulation induced by myocarditis. At the molecular level, BML-111 activates NRF2 signaling, which prevents sarcoplasmic reticulum–adenosine triphosphatase 2A down-regulation and Ca2+ mishandling, and attenuates the cardiac dysfunction and tissue damage induced by myocarditis.Ministerio de Economía y Competitividad (España); SAF-2017-84777RInstituto de Salud Carlos III; PI17/01093Instituto de Salud Carlos III; PI17/01344Instituto de Salud Carlos III; PI20/01482Ministerio de Ciencia, Innovación y Universidades (España); PGC2018-097019-B-I00Ministerio de Economía, Industria y Competitividad (España); 10.13039/501100011033Ministerio de Industria, Economía y Competitividad; PID2020-113238RB-I00Ministerio de Industria, Economía y Competitividad (España); PID2019-105600RB-I00Fundación La Caixa; HR17-0024

    Células de origen y expresión de la neurostatina durante el desarrollo del encéfalo de la rata

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 01-03-2001La neurostaha se ha descrito como un inhibidor de la división de astroblastos y astrocitomas presente en extractos de cerebro de rata. Inmunologicamente, el inhibidor está relacionado con la región glicídica del receptor del k t o r de crecimiento epid6rmico (EGFR) y antigenos saaguineos del tipo Lewis X, como se ha indicado más arriba. La proliferación y diferenciacih de la m l i a es un fenómeno fundamental durante el desarrollo del sistema nervioso. El numero de astrocitos en el cerebro de maderos a d h permanece estacionario. Los gangliósidos pueden estar participando en los mecanismos que controlan el crecimiento y la difermciación de la glia normal y neopiásica. El carácter minoritario de estas moléculas parece adjudicarles poca importancia biológica. Sin embargo, su expresión. regulada durante el d m l i o y en determinadas células tumorales, descarta esta posibilidad. La expresión restringida de estos marcadores tambi6n induce a pensar en un papel importaate en la organización del sistema nervioso central. A parte de su papel como moléculas implicadas en guía axonai, los O-acetil gangliósidos son marcadores de progenitores neurales y aparecm como antigenos oncofetales en ciertas heas de células tumorales. La neumitatina pue& tmer gran importancia en la señabción iatcrcelular m el sistana nervioso d (SNC) y tambicri ai la regulación de la gliosis en procesos tumorales o tms una lesión. Previamente, nosotros establecimos dos anticuerpos monoclonales contra el inhibidor glicolipidico, RID y R2B. La expresión de la neumtatha se ha h a 0 po r métodos bioquimicos (dot-blot, HPLC, TLC) y mediante inmunohistoquimica, valiéndonos de los anticuerpos monoclonales generados en el laboratorio. Los anticuerpos monoclonales, RID y WB, generados contra la neurostatina, reconocen especifícamente el epitopo Ogcetilado del glicolipido inhibidor y más dkbilmente otros gangliósidos que comparten el mismo epitopo. Ambos anticuerpos anti-neurostatina son capacm de bloquear la actividad inhibitoria de la proliferación de astrobkstos del glicolipido inhibidor. Los multados oknidos indicaa que ia neumdatllia se expresa en el cerebro & rata mbnonaria de 18 días (E18). La i n m d v i d a d disminuye durante ia primrra semana postiiatal (PO-PS) para aummtar poshiormente durante la segunda sanaiia poshiatal (P7P14) hasta ia edad adulta Tanto la inmunoreactividad anti-neurostatina como la actividad inhibitoria se localizan preferentemente en la fracción de membranas y a edades desde E18 hasta adulto la inmunoreactividad anti-neurostatioa corresponde o a ntauodah o a moléculas con epitopos relacionados con la neumtatba. La expresión temporal y la distribución celular de la neurostatina en el desarrollo se determinó immunohistoquimicamente con los anticuerpos monoclonales R1D y R2B en E18, P3, P9 y adulto. La neurostatina presenta un marcaje extracelular m E18. La inmunoreactividad disminuye apreciablemente en P3 para volver a aumentar en P9. El ptrón de marcaje en P9 y adulto es de superficie, definido por un marcaje difuso en todas las regiones del cerebro e s t u d ' i y defínido sobre la membrana externa de células neurales m corteza e hipocampo. El nivel de neumtatba varía en el cerebelo durante el demUo, pro a difkrencia del cerebro, el nivel de neurostatina post-natal se mantiene constante hasta P9, aumentando después hasta alcanzar la máxima inmunoreactividad en P30. La capagranular y la de las células de PurlOnje reunen la mayor inmunoreactividad en ratas de edades desde P15 a adulto. El periodo de máxima inmunoreactividad anti-neurostatina en el cerebelo de rata coincide con el momento en que cesa la división de la glia de Bergman. Las neuronas son las principales células productoras de la neurostatioa en el SNC. El glicolipido inhibidor se localiza mayoritariamente en las membranas neuronales y en menor proporción en el citosol. Los cultivos de neuronas preataban mayor inmunorreactividad y actividad inhibitona de la proliferación de astroblastos que los astrocitos. Por otra parte, la inmunodvidad es casi el doble en los cocultivos de astrocitos fijados y neuronas. Este resultado implica una regulación en la síntesisltiberación de la neurostanina por el contacto am astrocitdneurona. La neumtatba inhibe la protiferación de astroblastos de dos formas diferentes: inhibición por contacto debida a la neurostatina de las membranas naironales e inhibición por neurostatina liberada al medio. La liberación de neuroBtatiaa en el medio es máxima a las 36 b de w-cultivar asboglia y neuronas. 6. Existe una relación óptima neumna/dlasto para la producción de inhibidor de la pmliferación de asIroblastos in M'm que depende del tipo neuronal. Neuronas de diferentes regiones del SNC de rata poseen diferente capacidad inhibitoria. Así, las neuronas del cerebelo inhiben la división astroglial más que las neuronas de hipocampo o corteza

    Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke

    Full text link
    Brain repair involves a compendium of natural mechanisms that are activated following stroke. From a therapeutic viewpoint, reparative therapies that encourage cerebral plasticity are needed. In the last years, it has been demonstrated that modulatory treatments for brain repair such as trophic factor- and stem cell-based therapies can promote neurogenesis, gliogenesis, oligodendrogenesis, synaptogenesis and angiogenesis, all of which having a beneficial impact on infarct volume, cell death and, finally, and most importantly, on the functional recovery. However, even when promising results have been obtained in a wide range of experimental animal models and conditions these preliminary results have not yet demonstrated their clinical efficacy. Here, we focus on brain repair modulatory treatments for ischaemic stroke, that use trophic factors, drugs with trophic effects and stem cell therapy. Important and still unanswered questions for translational research ranging from experimental animal models to recent and ongoing clinical trials are reviewed hereSupported by research grants from PI060575 and PS09/01606 (Spanish Ministry of Science), CIDEM, RENEVAS (RD07/0026/2003) (Spanish Neurovascular Network) and FEDER. Research Institute Carlos III, Ministry Science and Innovation. Also, we have obtained research grants from Ferrer Group, EVER Neuro Pharma and Celleri
    corecore