94 research outputs found

    Advanced spot quality analysis in two-colour microarray experiments

    Get PDF
    Background: Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings: We evaluated the performance of two image analysis packages MAIA and GenePix (GP) using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5%) than GP with default spot filtering conditions. Conclusion: Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions. © 2008 Friederich et al; licensee BioMed Central Ltd

    Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton.</p> <p>Results</p> <p>Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not.</p> <p>Conclusion</p> <p>Our data demonstrate that Actichip is a powerful alternative to commercial high density microarrays for cytoskeleton gene profiling in normal or pathological samples. Actichip is available upon request.</p

    Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors.

    Get PDF
    peer reviewedGlioblastoma (GBM), the most frequent and aggressive malignant primary brain tumor, is characterized by a highly invasive growth. In our previous study we showed that overexpression of Carboxypeptidase E (CPE) mitigated glioma cell migration. In the present study we aimed at deciphering the regulatory mechanisms of the secreted form of CPE (sCPE). By transcriptome analysis and inhibition of signaling pathways involved in the regulation of cell growth and motility, we discovered that overexpression of sCPE was accompanied by differential regulation of mRNAs connected to the motility-associated networks, among others FAK, PAK, Cdc42, integrin, STAT3 as well as TGF-β. Especially SLUG was downregulated in sCPE-overexpressing glioma cells, paralleled by reduced expression of matrix-metalloproteinases (MMP) and, in consequence, by decreased cell migration. Expression of SLUG was regulated by ERK since inhibition of ERK reverted sCPE-mediated SLUG downregulation and enhanced cell motility. In a mouse glioma model, overexpression of sCPE significantly prolonged survival. Our results implicate a novel role for sCPE that mainly affects the expression of motility-associated genes via several signal pathways

    Crosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines

    Get PDF
    Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition

    Sequence and Comparative Genomic Analysis of Actin-related Proteins

    No full text
    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of ∼700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4

    Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes

    Get PDF
    Glioblastoma (GBM) is known to be a heterogeneous disease; however, the genetic composition of the cells within a given tumour is only poorly explored. In the advent of personalised medicine the understanding of intra-tumoural heterogeneity at the cellular and the genetic level is mandatory to improve treatment and clinical outcome. By combining ploidy-based flow sorting with array-comparative genomic hybridization we show that primary GBMs present as either mono- or polygenomic tumours (64 versus 36 %, respectively). Monogenomic tumours were limited to a pseudodiploid tumour clone admixed with normal stromal cells, whereas polygenomic tumours contained multiple tumour clones, yet always including a pseudodiploid population. Interestingly, pseudodiploid and aneuploid fractions carried the same aberrations as defined by identical chromosomal breakpoints, suggesting that evolution towards aneuploidy is a late event in GBM development. Interestingly, while clonal heterogeneity could be recapitulated in spheroid-based xenografts, we find that genetically distinct clones displayed different tumourigenic potential. Moreover, we show that putative cancer stem cell markers including CD133, CD15, A2B5 and CD44 were present on genetically distinct tumour cell populations. These data reveal the clonal heterogeneity of GBMs at the level of DNA content, tumourigenic potential and stem cell marker expression, which is likely to impact glioma progression and treatment response. The combined knowledge of intra-tumour heterogeneity at the genetic, cellular and functional level is crucial to assess treatment responses and to design personalized treatment strategies for primary GBM
    corecore