203 research outputs found

    An improved tool of water data analytics for flowmeters data

    Get PDF
    This paper presents an improved tool for data validation and reconstruction of flowmeters. These sensors are installed in the Catalonia regional water network from Barcelona (Spain). Here a new time series model with exogenous variable is proposed with excellent results for data validation. It is postulated that the integration of the electronics alarms, along with other tests about the daily data accumulated and a later analysis of the data reconstruction allow to improve the results of the existing tools. This is accomplished by decreasing the false alarms and missing alarms of more than 6000 hourly data retrieved from more than 200 flowmeters each day. This new tool provides reliable information daily reliable information of the state of the water network. This information could potentially contribute to optimally control and manage this large and complex water network.Postprint (published version

    The path to efficiency: fast marching method for safer, more efficient mobile robot trajectories

    Get PDF
    This article provides a comprehensive view of the novel fast marching (FM) methods we developed for robot path planning. We recall some of the methods developed in recent years and present two improvements upon them: the saturated FM square (FM2) and an heuristic optimization called the FM2 star (FM2*) method. The saturated variation of the existing saturated FM2 provides safe paths that avoid unnecessarily long trajectories (like those computed using the Voronoi diagram). FM2* considerably reduces the computation time. As a result, these methods provide not only a trajectory but also an associated control speed for the robot at each point of the trajectory. The proposed methods are complete; if there is a valid trajectory, it will always be found and will always be optimal in estimated completion time.Comunidad de Madrid. S2009/DPI-1559/ROBOCITY2030 IIPublicad

    A simple national intercomparison of radon in water

    Get PDF
    Radon-222, a naturally occurring radioactive gas, responsible together with its progeny of around 50% of the average effective dose received by the population, has not been regulated by law until the recent Directive 2013/51 /Euratom. Its transposition into Spanish legislation was made in the recent RD 314/2016, which sets at limit value of 500 Bq l¯¹ for radon-222 in water for human consumption. Intercomparison exercises, such as those carried out by IPROMA SL and the Laboratory of Environmental Radioactivity of the Cantabria University (LARUC) in November 2015 and December 2016, represent the most useful tool available for detecting problems and taking corrective actions necessary for an efficient measurement by part of the laboratories. The participants in these exercises used three techniques: liquid scintillation counting, gamma spectrometry and desorption followed by ionisation chamber detection

    Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

    Full text link
    [EN] Polyurethane/cellulose composites were synthesized from castor-oil-derived polyols and isophorone diisocyanate using dibutyltin dilaurate (DBTDL) as the catalyst. Materials were obtained by adding 2% cellulose in the form of either microcrystals (20 lm) or nanocrystals obtained by acid hydrolysis. The aim was to assess the effects of filler particle size and the use of a catalyst on the physicochemical properties and biological response of these composites. The addition of the catalyst was found to be essential to prevent filler aggregations and to enhance the tensile strength and elongation at break. The cellulose particle size influenced the composite properties, as its nanocrystals heighten hydrogen bond interactions between the filler surface and polyurethane domains, improving resistance to hydrolytic degradation. All hybrids retained cell viability, and the addition of DBTDL did not impair their biocompatibility. The samples were prone to calcification, which suggests that they could find application in the development of bioactive materials.Universidad de La Sabana supported this work under Grant No. ING-176-2016. S.V.V. acknowledges the Universidad de La Sabana for the Teaching Assistant Scholarship for his master's studies. J.A.G.T. and A.V.L. acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through project DPI2015-65401-C3-2-R (including FEDER financial support). The authors acknowledge the assistance and advice of the Electron Microscopy Service of the UPV. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Villegas-Villalobos, S.; Diaz, L.; Vilariño, G.; Vallés Lluch, A.; Gómez-Tejedor, J.; Valero, M. (2018). Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. Journal of Materials Research. 33(17):2598-2611. https://doi.org/10.1557/jmr.2018.286S259826113317Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379Kaushik, A., & Garg, A. (2013). Castor Oil Based Polyurethane Nanocomposites with Cellulose Nanocrystallites Fillers. Advanced Materials Research, 856, 309-313. doi:10.4028/www.scientific.net/amr.856.309Yilgör, I., Yilgör, E., & Wilkes, G. L. (2015). Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 58, A1-A36. doi:10.1016/j.polymer.2014.12.014Javni, I., Petrovi?, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 77(8), 1723-1734. doi:10.1002/1097-4628(20000822)77:83.0.co;2-kGurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39-48. doi:10.1016/j.porgcoat.2014.11.017Girouard, N. M., Xu, S., Schueneman, G. T., Shofner, M. L., & Meredith, J. C. (2016). Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites. ACS Applied Materials & Interfaces, 8(2), 1458-1467. doi:10.1021/acsami.5b10723Saralegi, A., Gonzalez, M. L., Valea, A., Eceiza, A., & Corcuera, M. A. (2014). The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Composites Science and Technology, 92, 27-33. doi:10.1016/j.compscitech.2013.12.001Senich, G. A., & MacKnight, W. J. (1980). Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane. Macromolecules, 13(1), 106-110. doi:10.1021/ma60073a021Prisacariu, C. (2011). Structural studies on polyurethane elastomers. Polyurethane Elastomers, 23-60. doi:10.1007/978-3-7091-0514-6_2Oprea, S., Potolinca, V. O., Gradinariu, P., Joga, A., & Oprea, V. (2016). Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents. Cellulose, 23(4), 2515-2526. doi:10.1007/s10570-016-0972-4Cao, X., Dong, H., & Li, C. M. (2007). New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules, 8(3), 899-904. doi:10.1021/bm0610368Omonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107, 378-385. doi:10.1016/j.indcrop.2017.05.041Yakovlev, Y. V., Gagolkina, Z. O., Lobko, E. V., Khalakhan, I., & Klepko, V. V. (2017). The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Composites Science and Technology, 144, 208-214. doi:10.1016/j.compscitech.2017.03.034Tang, Z. G., Teoh, S. H., McFarlane, W., Poole-Warren, L. A., & Umezu, M. (2002). In vitro calcification of UHMWPE/PU composite membrane. Materials Science and Engineering: C, 20(1-2), 149-152. doi:10.1016/s0928-4931(02)00025-5Dave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21(1), 18-24. doi:10.1016/j.jscs.2013.08.001Lundin, J. G., Daniels, G. C., McGann, C. L., Stanbro, J., Watters, C., Stockelman, M., & Wynne, J. H. (2016). Multi-Functional Polyurethane Hydrogel Foams with Tunable Mechanical Properties for Wound Dressing Applications. Macromolecular Materials and Engineering, 302(3), 1600375. doi:10.1002/mame.201600375Oprea, S., Joga, A., Zorlescu, B., & Oprea, V. (2014). Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers. High Performance Polymers, 26(8), 859-866. doi:10.1177/0954008314533359Kumar, M. N. S., & Siddaramaiah. (2007). Thermo gravimetric analysis and morphological behavior of castor oil based polyurethane-polyester nonwoven fabric composites. Journal of Applied Polymer Science, 106(5), 3521-3528. doi:10.1002/app.26826Datta, J., & Głowińska, E. (2014). Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Industrial Crops and Products, 61, 84-91. doi:10.1016/j.indcrop.2014.06.050Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001Fang, W., Arola, S., Malho, J.-M., Kontturi, E., Linder, M. B., & Laaksonen, P. (2016). Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. Biomacromolecules, 17(4), 1458-1465. doi:10.1021/acs.biomac.6b00067Rudnik, E., Resiak, I., & Wojciechowski, C. (1998). Thermoanalytical investigations of polyurethanes for medical purposes. Thermochimica Acta, 320(1-2), 285-289. doi:10.1016/s0040-6031(98)00485-7Lundin, J. G., McGann, C. L., Daniels, G. C., Streifel, B. C., & Wynne, J. H. (2017). Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Materials Science and Engineering: C, 79, 702-709. doi:10.1016/j.msec.2017.05.084Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering: C, 82, 130-140. doi:10.1016/j.msec.2017.08.064Narine, S. S., Kong, X., Bouzidi, L., & Sporns, P. (2006). Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: I. Elastomers. Journal of the American Oil Chemists’ Society, 84(1), 55-63. doi:10.1007/s11746-006-1006-4Alagi, P., Choi, Y. J., Seog, J., & Hong, S. C. (2016). Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Industrial Crops and Products, 87, 78-88. doi:10.1016/j.indcrop.2016.04.027Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., & Ahmad, A. (2015). Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydrate Polymers, 122, 202-211. doi:10.1016/j.carbpol.2014.12.081Mondal, S., & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polymer Degradation and Stability, 97(8), 1553-1561. doi:10.1016/j.polymdegradstab.2012.04.008Nguyen Dang, L., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. (2016). Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal, 81, 129-137. doi:10.1016/j.eurpolymj.2016.05.024Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171-180. doi:10.1007/s10570-006-9061-4Wik, V. M., Aranguren, M. I., & Mosiewicki, M. A. (2011). Castor oil-based polyurethanes containing cellulose nanocrystals. Polymer Engineering & Science, 51(7), 1389-1396. doi:10.1002/pen.21939Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068-2075. doi:10.1016/j.carbpol.2011.10.027Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., … Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798. doi:10.1016/j.carbpol.2011.07.009Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123Hocker, S. J. A., Hudson-Smith, N. V., Smith, P. T., Komatsu, C. H., Dickinson, L. R., Schniepp, H. C., & Kranbuehl, D. E. (2017). Graphene oxide reduces the hydrolytic degradation in polyamide-11. Polymer, 126, 248-258. doi:10.1016/j.polymer.2017.08.034Ryszkowska, J., Bil, M., Woźniak, P., Lewandowska, M., & Kurzydlowski, K. J. (2006). Influence of Catalyst Type on Biocompatibility of Polyurethanes. Materials Science Forum, 514-516, 887-891. doi:10.4028/www.scientific.net/msf.514-516.887Golomb, G., & Wagner, D. (1991). Development of a new in vitro model for studying implantable polyurethane calcification. Biomaterials, 12(4), 397-405. doi:10.1016/0142-9612(91)90008-xSantamaria-Echart, A., Ugarte, L., García-Astrain, C., Arbelaiz, A., Corcuera, M. A., & Eceiza, A. (2016). Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydrate Polymers, 151, 1203-1209. doi:10.1016/j.carbpol.2016.06.069Gorna, K., & Gogolewski, S. (2003). Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Journal of Biomedical Materials Research, 67A(3), 813-827. doi:10.1002/jbm.a.10148Boloori Zadeh, P., Corbett, S. C., & Nayeb-Hashemi, H. (2014). In-vitro calcification study of polyurethane heart valves. Materials Science and Engineering: C, 35, 335-340. doi:10.1016/j.msec.2013.11.015Patel, D. K., Biswas, A., & Maiti, P. (2016). Nanoparticle-induced phenomena in polyurethanes. Advances in Polyurethane Biomaterials, 171-194. doi:10.1016/b978-0-08-100614-6.00006-8Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y., & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymers, 95(1), 91-99. doi:10.1016/j.carbpol.2013.02.023Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., & Janik, H. (2017). Development of polyurethanes for bone repair. Materials Science and Engineering: C, 80, 736-747. doi:10.1016/j.msec.2017.07.047Marcovich, N. E., Auad, M. L., Bellesi, N. E., Nutt, S. R., & Aranguren, M. I. (2006). Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 21(4), 870-881. doi:10.1557/jmr.2006.0105Chawla, J. S., & Amiji, M. M. (2002). Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 249(1-2), 127-138. doi:10.1016/s0378-5173(02)00483-0Nabid, M. R., & Omrani, I. (2016). Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. Materials Science and Engineering: C, 69, 532-537. doi:10.1016/j.msec.2016.07.01

    Genetic diversity of the Spanish apple genetic resources using SSRs

    Get PDF
    The Spanish Program of Plant Genetic Resources integrates, among others, the collections located at Public University of Navarre, Centro de Investigaciones Agrarias de Mabegondo, Cabildos (Tenerife, La Palma and Gran Canaria), University of Lleida, Estación Experimental de Aula Dei-CSIC and CITA of Aragon. Those collections include mainly local cultivars from their respective regions, covering most of the Spanish apple-growing areas. Though some previous studies about the genetic variability of apple genetics resources from Spain were already performed, a complete analysis is needed in order to evaluate the complete diversity of Malus spp. in Spain. For doing that, the Spanish Government funded the project ¿Harmonization of the methodology of characterization, assessment of genetic diversity and definition of the core collection of the apple germplasm conserved in Spanish genebanks¿. In total, we have evaluated 1206 accessions using standardized methodologies, with SSR markers and morphological descriptors. SSR fingerprinting was performed with 13 SSR markers. SSR profiles were obtained independently and allele sizes were compared using a common set of cultivars selected as references. Results showed 601 genotypes for 1206 accessions. Most of the genotypes (438) were identified only in one accession. The other 163 genotypes were repeated in two to 81 accessions (involving 767 accessions in total). The harmonization of morphological descriptors will allow us to determine if the accessions with the same genotype are synonymies or closely related individuals. Results of this study highlight the interest of coordinated actions in order to optimize the management of germplasm collections and to evaluate the complete genetic diversity of Malus spp. in Spain.Peer Reviewe

    Imago. Sensory diversity project

    Get PDF
    Imago. Proyecto de diversidad sensorial se ha centrado en el estudio y la accesibilidad de las imágenes artísticas desde la perspectiva y experiencia de personas con diversidad sensorial. Nuestro punto de partida quedaba así fijado por la idea de que las personas con diversidad sensorial nos ofrecen una apertura para el estudio ampliado de las imágenes en función de la facultad de imaginar. Se trataba, pues, de elaborar un material audiovisual adecuado que prestase atención a la amplitud sensorial, esto es, sinestésica, de la imagen. Con tal planteamiento, este proyecto se proponía desarrollar tanto una dimensión teórica como una práctica para el estudio de las imágenes. De una parte se trataba de trabajar a partir de autores (artistas y teóricos) de distintas épocas que permitieran un acercamiento a la concepción ampliada de las imágenes desde perspectivas integradoras. De otra, se trataba de realizar una serie de videos en colaboración con personas con diversidad sensorial que nos permitieran un estudio crítico de las posibilidades de este formato en Internet.Depto. de Historia del ArteFac. de Geografía e HistoriaFALSEsubmitte

    Eficacia del gel vaginal de coriolus versicolor en mujeres con lesiones cervicales asociadas al virus del papiloma humano. El estudio Paloma

    Get PDF
    Objetivo: el objetivo del estudio fue determinar la eficacia de un gel vaginal con Coriolus versicolor, Papilocare®, en la reparación de las lesiones cervicales de bajo grado causada por el virus del papiloma humano (VPH). Material y métodos: estudio multicéntrico, abierto, aleatorizado y controlado que implicó 91 mujeres positivas en VPH con alteraciones de bajo grado en citología cervical y colposcopia concordante. Resultados: el porcentaje de mujeres con citología normal y colposcopia concordante después de tres y seis meses de tratamiento con el gel fue significativamente mayor (78,0% y 84,9%) que en el grupo control (54,8% y 64,5%), principalmente en pacientes con VPH de alto riesgo (79,5% y 87,8% frente a 52,0% y 56,0%). A los seis meses, el aclaramiento de VPH fue mayor en pacientes que recibieron tratamiento respecto a las que no lo recibieron (59,6% frente a 41,9%), especialmente en las de alto riesgo (62,5% frente a 40,0%). En comparación con basal, el estrés percibido por las pacientes se redujo en el grupo de tratamiento (de 21,1 a 19,0), mientras que se incrementó en el grupo control (de 17,7 a 20,7). Se describieron siete posibles/probables efectos adversos relacionados con el tratamiento; la mayoría de severidad leve o moderada. Conclusión: el tratamiento con el gel vaginal con Coriolus versicolor ha demostrado un mayor beneficio clínico que la conducta clínica habitual, espera vigilante, tanto en la muestra total como en el subgrupo de alto riesgo, respecto a su eficacia para el tratamiento de las lesiones cervicales de bajo grado y el aclaramiento de las cepas de VPH después de seis meses de tratamiento. El gel vaginal ha presentado además un perfil de seguridad y tolerabilidad alto y ha conferido adicionalmente una importante mejora de la reepitelización cervical, una reducción del estrés percibido y una alta adherencia terapéutica.2021-2
    corecore