20 research outputs found

    Quantitative detection of circulating tumor DNA by droplet-based digital PCR.

    Get PDF
    Droplet-based digital PCR is used to detect and quantify the seven most frequent KRAS mutations in circulating tumor DNA of patients with advanced colorectal cancer.- The droplet-based digital PCR method is versatile and two modes of analysis are demonstrated: o Duplex analysis enables sensitive detection of wild-type DNA plus one KRAS or BRAF mutation. o Multiplex analysis enables simultaneous detection of wild-type DNA plus 3 or 4 KRAS mutations.- Detection of rare sequences is highly sensitive compared to the same Taqman assay in bulk (10 % LLOD bulk vs 0.0005 % LLOD droplets).- Biomarkers detection is quantitative: the fraction of mutated DNA in patient samples ranges from 0.1 % to 42%.- Results from circulating tumor DNA analysis match the tumor DNA characterization in most cases, and discordant results reveal need for further studies. Copy and paste your text content here, adjusting the font size to fit Background Circulating tumor DNA (ctDNA) is present in plasma of individuals with advanced cancers. 1 ctDNA is a prognostic marker for patients with colorectal cancer (CRC) and it might also be used for predicting the response to targeted therapy. For example, mutations in KRAS indicate which patients will fail to respond to specific therapies (cetuximab, panitunimab). 2 Although ctDNA is characterized by the presence of a somatic mutation, direct quantitative detection through a simple workflow of such mutant DNA is not feasible by current technologies because the ratio of ctDNA to wildtype DNA can be as low as 1/10,000. This study describes the use of droplet-based digital PCR for detection and quantitation of one of the seven most frequent KRAS mutations in ctDNA from plasm

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Digital PCR, a technique for the future

    No full text
    International audienc

    Gelatin-Coated Microfluidic Channels for 3D Microtissue Formation: On-Chip Production and Characterization

    No full text
    Traditional two-dimensional (2D) cell culture models are limited in their ability to reproduce human structures and functions. On the contrary, three-dimensional (3D) microtissues have the potential to permit the development of new cell-based assays as advanced in vitro models to test new drugs. Here, we report the use of a dehydrated gelatin film to promote tumor cells aggregation and 3D microtissue formation. The simple and stable gelatin coating represents an alternative to conventional and expensive materials like type I collagen, hyaluronic acid, or matrigel. The gelatin coating is biocompatible with several culture formats including microfluidic chips, as well as standard micro-well plates. It also enables long-term 3D cell culture and in situ monitoring of live/dead assays

    Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications

    No full text
    Cell populations are heterogeneous: they can comprise different cell types or even cells at different stages of the cell cycle and/or of biological processes. Furthermore, molecular processes taking place in cells are stochastic in nature. Therefore, cellular analysis must be brought down to the single cell level to get useful insight into biological processes, and to access essential molecular information that would be lost when using a cell population analysis approach. Furthermore, to fully characterize a cell population, ideally, information both at the single cell level and on the whole cell population is required, which calls for analyzing each individual cell in a population in a parallel manner. This single cell level analysis approach is particularly important for diagnostic applications to unravel molecular perturbations at the onset of a disease, to identify biomarkers, and for personalized medicine, not only because of the heterogeneity of the cell sample, but also due to the availability of a reduced amount of cells, or even unique cells. This chapter presents a versatile platform meant for the parallel analysis of individual cells, with a particular focus on diagnostic applications and the analysis of cancer cells. We first describe one essential step of this parallel single cell analysis protocol, which is the trapping of individual cells in dedicated structures. Following this, we report different steps of a whole analytical process, including on-chip cell staining and imaging, cell membrane permeabilization and/or lysis using either chemical or physical means, and retrieval of the cell molecular content in dedicated channels for further analysis. This series of experiments illustrates the versatility of the herein-presented platform and its suitability for various analysis schemes and different analytical purposes

    Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective.

    No full text
    International audienceEarly detection of cancers through the analysis of ctDNA could have a significant impact on morbidity and mortality of cancer patients. However, using ctDNA for early cancer diagnosis is challenging partly due to the low amount of tumor DNA released in the circulation and its dilution within DNA originating from non-tumor cells. Development of new technologies such as droplet-based digital PCR (ddPCR) or optimized next generation sequencing (NGS) has greatly improved the sensitivity, specificity and precision for the detection of rare sequences. Areas covered: This paper will focus on the potential application of ddPCR and optimized NGS to detect ctDNA for detection of cancer recurrence and minimal residual disease as well as early diagnosis of cancer patients. Expert commentary: Compared to tumor tissue biopsies, blood-based ctDNA analyses are minimally invasive and accessible for regular follow-up of cancer patients. They are also described as a better picture of patients' pathology allowing to highlight both tumor heterogeneity and multiple tumor sites. After a brief introduction on the application of the follow-up of ctDNA using genetic or epigenetic biomarkers for prognosis and surveillance of cancer patients, potential perspectives of using ctDNA for early diagnosis of cancers will be presented

    The Position of Circulating Tumor DNA in the Clinical Management of Colorectal Cancer

    No full text
    Colorectal cancer (CRC) is the third most common cancer type worldwide, with over 1.9 million new cases and 935,000 related deaths in 2020. Within the next decade, the incidence of CRC is estimated to increase by 60% and the mortality by 80%. One of the underlying causes of poor prognosis is late detection, with 60 to 70% of the diagnoses occurring at advanced stages. Circulating cell-free DNA (ccfDNA) is probably the most promising tool for screening, diagnosis, prediction of therapeutic response, and prognosis. More specifically, the analysis of the tumor fraction within the ccfDNA (circulating tumor DNA, ctDNA) has great potential to improve the management of CRC. The present review provides an up-to-date and comprehensive overview of the various aspects related to ctDNA detection in CRC

    Circulating tumor DNA: a help to guide therapeutic strategy in patients with borderline and locally advanced pancreatic adenocarcinoma?

    No full text
    International audienceBackground: prognostic biomarkers could be useful to better select patients with borderline resectable (BR) or locally advanced (LA) pancreatic adenocarcinoma (PA) for chemoradiotherapy (CRT) and/or secondary resection.Aims: The main objective of this work was to study characteristics, received treatments and prognostic of patients with BR or LA PA according to their baseline circulating tumor DNA status and, for secondary objective, neutrophil-to-lymphocyte Ratio (NLR).Methods: ctDNA status at baseline was determined using Next Generation Sequencing in a consecutive monocentric cohort of patients with a BR or LA PA.Results: 69 patients were included, 31 with BR PA and 38 with LA PA. 14 (20.3%) patients had baseline positive ctDNA. Five (7.8%) patients had NLR> 5. Patients with positive ctDNA had 3.7 months shorter progression free survival (p = 0.006). Patients with positive ctDNA had earlier progression after the beginning of CRT (4.4 vs 7.1 months; p = 0.068) and shorter relapse free survival after secondary resection (9.2 vs 22.9 months; p = 0.016).Conclusions: positive ctDNA at baseline was associated with a worse prognosis in patients with BR or LA PA. These data are exploratory and must be confirmed in further prospective trials
    corecore