22 research outputs found

    Response of interspecific and sativa upland rices to Mali phosphate rock and soluble phosphate fertilizer

    Get PDF
    In West Africa, two-thirds of upland rice is grown on acidic phosphorus (P)- deficient soils. Phosphorus is one of the most limiting-nutrients affecting crop productivity. A three-year field experiment was conducted on a Ferralsol in Coˆ te d’Ivoire to study the response of four interspecific rice cultivars and a sativa (control cultivar) to Tilemsi phosphate rock (PR) and soluble triple superphosphate (TSP) fertilizer. PR was applied at 0, 150, 300, and 450 kg ha71 P once in the first year and residual effects were measured in the following years. TSP (0, 50, 100 and 150 kg ha71 P) was applied yearly. More significant yield increasing (38%) was observed in the second year. Annual application of 50 kg P ha71 as TSP or a one-time application of 150 kg P ha71 as PR was the optimum rate for the production of all cultivars. Higher rates of P from TSP (100 and 150 kg P ha71) gave 2–3 times greater residual P in soil than the optimum rate, inducing no further response of rice. Two interspecific cultivars were identified as the most acid- and low P-tolerant cultivars for improving rice production in West Africa humid forest zone

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    Get PDF
    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.Funding Agencies|European Commission [229927]; University of Crete; PHOTOPEPMAT, ARISTEIA II Action, action Education and Lifelong Learning [3941]; European Union (the European Social Fund); AngioMatTrain, Marie Curie Industry Initial Training Network (ITN), call FP7-PEOPLE ITN [317304]; SERC (Swedish e-Science Research Center); DFG-Center for Functional Nanostructures (CFN); Helmholtz STN programme; FP7 Future and Emerging Technologies for Energy Efficiency project PEPDIODE [256672]; CNRS; Aix-Marseille University through the A*MIDEX project EtNA; Region Provence-Alpes Cote dAzur through project NanoMosaique; Region Provence-Alpes Cote dAzur through project CaliGraph</p

    Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches

    No full text
    Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20. months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed

    A Phylogeographic Analysis of Porcine Parvovirus 1 in Africa

    No full text
    Porcine parvovirus 1 (PPV1) is recognized as a major cause of reproductive failure in pigs, leading to several clinical outcomes globally known as SMEDI. Despite being known since the late 1960s its circulation is still of relevance to swine producers. Additionally, the emergence of variants such as the virulent 27a strain, for which lower protection induced by vaccines has been demonstrated, is of increasing concern. Even though constant monitoring of PPV1 using molecular epidemiological approaches is of pivotal importance, viral sequence data are scarce especially in low-income countries. To fill this gap, a collection of 71 partial VP2 sequences originating from eight African countries (Burkina Faso, Côte d’Ivoire, Kenya, Mozambique, Namibia, Nigeria, Senegal, and Tanzania) during the period 2011–2021 were analyzed within the context of global PPV1 variability. The observed pattern largely reflected what has been observed in high-income regions, i.e., 27a-like strains were more frequently detected than less virulent NADL-8-like strains. A phylogeographic analysis supported this observation, highlighting that the African scenario has been largely shaped by multiple PPV1 importation events from other continents, especially Europe and Asia. The existence of such an international movement coupled with the circulation of potential vaccine-escape variants requires the careful evaluation of the control strategies to prevent new strain introduction and persistence
    corecore