64 research outputs found

    Identification of a dominant CD4 T cell epitope in the membrane lipoprotein Tul4 from Francisella tularensis LVS

    Get PDF
    Francisella tularensis is a Gram-negative intracellular bacterium that is the causative agent of tularemia. Small mammals such as rodents and rabbits, as well as some biting arthropods, serve as the main vectors for environmental reservoirs of F. tularensis. The low infectious dose, ability to aerosolize the organism, and the possibility of generating antibiotic resistant strains make F. tularensis a prime organism for use in bioterrorism. As a result, some strains of F. tularensis have been placed on the CDC category A select agent list. T cell immune responses are thought to be a critical component in protective immunity to this organism. However, investigation into the immune responses to F. tularensis has been hampered by the lack of molecularly defined epitopes. Here we report the identification of a major CD4+ T cell epitope in C57Bl/6 (B6) mice. The murine model of F. tularensis infection is relevant as mice are a natural host for F. tularensis LVS and exhibit many of the same features of tularemia seen in humans. Using T cell hybridomas derived from B6 mice that had either been inoculated with F. tularensis and allowed to clear the infection or which had been immunized by conventional means using purified recombinant protein in adjuvant, we have identified amino acids 86–99 of the lipoprotein Tul4 (RLQWQAPEGSKCHD) as an immunodominant CD4 T cell epitope in B6 mice. This epitope is a major component of both the acute and memory responses to F. tularensis infection and can constitute as much as 20% of the responding CD4 T cells in an acute infection. Reactive T cells can also effectively enter the long-term memory T cell pool. The identification of this epitope will greatly aid in monitoring the course of F. tularensis infection and will also aid in the development of effective vaccine strategies for F. tularensis

    The natural history of primary sclerosing cholangitis in 781 children. A multicenter, international collaboration

    Get PDF
    There are limited data on the natural history of primary sclerosing cholangitis (PSC) in children. We aimed to describe the disease characteristics and long-term outcomes of pediatric PSC. We retrospectively collected all pediatric PSC cases from 36 participating institutions and conducted a survival analysis from the date of PSC diagnosis to dates of diagnosis of portal hypertensive or biliary complications, cholangiocarcinoma, liver transplantation, or death. We analyzed patients grouped by disease phenotype and laboratory studies at diagnosis to identify objective predictors of long-term outcome. We identified 781 patients, median age 12 years, with 4,277 person-years of follow-up; 33% with autoimmune hepatitis, 76% with inflammatory bowel disease, and 13% with small duct PSC. Portal hypertensive and biliary complications developed in 38% and 25%, respectively, after 10 years of disease. Once these complications developed, median survival with native liver was 2.8 and 3.5 years, respectively. Cholangiocarcinoma occurred in 1%. Overall event-free survival was 70% at 5 years and 53% at 10 years. Patient groups with the most elevated total bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis had the worst outcomes. In multivariate analysis PSC-inflammatory bowel disease and small duct phenotypes were associated with favorable prognosis (hazard ratios 0.6, 95% confidence interval 0.5-0.9, and 0.7, 95% confidence interval 0.5-0.96, respectively). Age, gender, and autoimmune hepatitis overlap did not impact long-term outcome. CONCLUSION: PSC has a chronic, progressive course in children, and nearly half of patients develop an adverse liver outcome after 10 years of disease; elevations in bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis can identify patients at highest risk; small duct PSC and PSC-inflammatory bowel disease are more favorable disease phenotypes

    Ursodeoxycholic Acid Therapy in Pediatric Primary Sclerosing Cholangitis : Predictors of Gamma Glutamyltransferase Normalization and Favorable Clinical Course

    Get PDF
    Objective To investigate patient factors predictive of gamma glutamyltransferase (GGT) normalization following ursodeoxycholic acid (UDCA) therapy in children with primary sclerosing cholangitis. Study design We retrospectively reviewed patient records at 46 centers. We included patients with a baseline serum GGT level >= 50 IU/L at diagnosis of primary sclerosing cholangitis who initiated UDCA therapy within 1 month and continued therapy for at least 1 year. We defined "normalization" as a GGT level Results We identified 263 patients, median age 12.1 years at diagnosis, treated with UDCA at a median dose of 15 mg/kg/d. Normalization occurred in 46%. Patients with normalization had a lower prevalence of Crohn's disease, lower total bilirubin level, lower aspartate aminotransferase to platelet ratio index, greater platelet count, and greater serum albumin level at diagnosis. The 5-year survival with native liver was 99% in those patients who achieved normalization vs 77% in those who did not. Conclusions Less than one-half of the patients treated with UDCA have a complete GGT normalization in the first year after diagnosis, but this subset of patients has a favorable 5-year outcome. Normalization is less likely in patients with a Crohn's disease phenotype or a laboratory profile suggestive of more advanced hepatobiliary fibrosis. Patients who do not achieve normalization could reasonably stop UDCA, as they are likely not receiving clinical benefit. Alternative treatments with improved efficacy are needed, particularly for patients with already-advanced disease.Peer reviewe

    Recurrence of Primary Sclerosing Cholangitis After Liver Transplant in Children : An International Observational Study

    Get PDF
    Background and Aims Recurrent primary sclerosing cholangitis (rPSC) following liver transplant (LT) has a negative impact on graft and patient survival; little is known about risk factors for rPSC or disease course in children. Approach and Results We retrospectively evaluated risk factors for rPSC in 140 children from the Pediatric PSC Consortium, a multicenter international registry. Recipients underwent LT for PSC and had >90 days of follow-up. The primary outcome, rPSC, was defined using Graziadei criteria. Median follow-up after LT was 3 years (interquartile range 1.1-6.1). rPSC occurred in 36 children, representing 10% and 27% of the subjects at 2 years and 5 years following LT, respectively. Subjects with rPSC were younger at LT (12.9 vs. 16.2 years), had faster progression from PSC diagnosis to LT (2.5 vs. 4.1 years), and had higher alanine aminotransferase (112 vs. 66 IU/L) at LT (all P < 0.01). Inflammatory bowel disease was more prevalent in the rPSC group (86% vs. 66%; P = 0.025). After LT, rPSC subjects had more episodes of biopsy-proved acute rejection (mean 3 vs. 1; P < 0.001), and higher prevalence of steroid-refractory rejection (41% vs. 20%; P = 0.04). In those with rPSC, 43% developed complications of portal hypertension, were relisted for LT, or died within 2 years of the diagnosis. Mortality was higher in the rPSC group (11.1% vs. 2.9%; P = 0.05). Conclusions The incidence of rPSC in this cohort was higher than previously reported, and was associated with increased morbidity and mortality. Patients with rPSC appeared to have a more aggressive, immune-reactive phenotype. These findings underscore the need to understand the immune mechanisms of rPSC, to lay the foundation for developing new therapies and improve outcomes in this challenging population.Peer reviewe

    Assessing the Validity of Adult-derived Prognostic Models for Primary Sclerosing Cholangitis Outcomes in Children

    Get PDF
    Background: Natural history models for primary sclerosing cholangitis (PSC) are derived from adult patient data, but have never been validated in children. It is unclear how accurate such models are for children with PSC. Methods: We utilized the pediatric PSC consortium database to assess the Revised Mayo Clinic, Amsterdam-Oxford, and Boberg models. We calculated the risk stratum and predicted survival for each patient within each model using patient data at PSC diagnosis, and compared it with observed survival. We evaluated model fit using the c-statistic. Results: Model fit was good at 1 year (c-statistics 0.93, 0.87, 0.82) and fair at 10 years (0.78, 0.75, 0.69) in the Mayo, Boberg, and Amsterdam-Oxford models, respectively. The Mayo model correctly classified most children as low risk, whereas the Amsterdam-Oxford model incorrectly classified most as high risk. All of the models underestimated survival of patients classified as high risk. Albumin, bilirubin, AST, and platelets were most associated with outcomes. Autoimmune hepatitis was more prevalent in higher risk groups, and over-weighting of AST in these patients accounted for the observed versus predicted survival discrepancy. Conclusions: All 3 models offered good short-term discrimination of outcomes but only fair long-term discrimination. None of the models account for the high prevalence of features of autoimmune hepatitis overlap in children and the associated elevated aminotransferases. A pediatric-specific model is needed. AST, bilirubin, albumin, and platelets will be important predictors, but must be weighted to account for the unique features of PSC in children.Peer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore