11 research outputs found

    Electro-kinetic technology as a low-cost method for dewatering food by-product

    Get PDF
    Increasing volumes of food waste, intense environmental awareness, and stringent legislation have imposed increased demands upon conventional food waste management. Food byproducts that were once considered to be without value are now being utilized as reusable materials, fuels, and energy in order to reduce waste. One major barrier to the valorization of food by-products is their high moisture content. This has brought about the necessity of dewatering food waste for any potential re-use for certain disposal options. A laboratory system for experimentally characterizing electro-kinetic dewatering of food by-products was evaluated. The bench scale system, which is an augmented filter press, was used to investigate the dewatering at constant voltage. Five food by-products (brewer’s spent grain, cauliflower trimmings, mango peel, orange peel, and melon peel) were studied. The results indicated that electro-kinetic dewatering combined with mechanical dewatering can reduce the percentage of moisture from 78% to 71% for brewer’s spent grain, from 77% to 68% for orange peel, from 80% to 73% for mango peel, from 91% to 74% for melon peel, and from 92% to 80% for cauliflower trimmings. The total moisture reduction showed a correlation with electrical conductivity (R2¼0.89). The energy consumption of every sample was evaluated and was found to be up to 60 times more economical compared to thermal processing

    Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System

    No full text
    High Concentrator Photovoltaic Thermal (HCPV/T) systems produce both electrical and thermal energy and they are efficient in areas with high Direct Normal Irradiance (DNI). This paper estimates the lifecycle environmental impact of the HCPV/T 2000x system for both electrical and thermal functionalities. Process-based attributional method following the guidelines and framework of ISO 14044/40 was used to conduct the Life Cycle Assessment (LCA). The midpoint and endpoint impact categories were studied. It was found that the main hotspots are the production of the thermal energy system contributing with 50% and 55%, respectively, followed by the production of the tracking system with 29% and 32% and the operation and maintenance with 13% and 7%. The main contributor to the lifecycle environmental impact category indicators was found to be the raw materials acquisition/production and manufacturing of the thermal energy and tracking systems. The results indicate that the lifecycle environmental impact of the HCPV/T 2000x system is lower compared to fuel-based Combined Heat and Power (CHP) and non-Renewable Energy Sources (non-RES) systems

    Reducing GHG Emissions and Improving Cost Effectiveness via Energy Efficiency Enhancements: A Case Study in a Biscuit Industry

    No full text
    As the new climate change driven regulations are brought into the force and energy prices and sustainability awareness increased, many companies are looking for the most efficient way to reduce their energy consumption and greenhouse gas (GHG) emissions. In this context, the food industry as one of the main energy consumers within the industry sector plays a significant role. This paper analyses the current energy consumption in a biscuit manufacturing company and considers a number of possible solutions for the energy efficiency improvements. The company uses modern and automated production processes and has signed a Climate Change Agreement. The experimental part involves identification of the energy users, as well as analysis of the energy bills, operation times, production schedule and on-site measurements of energy consumption. The opportunities for energy efficiency improvements, GHG emissions and costs reduction are investigated and additional information about the investments and payback period of the proposed improvements discussed. A number of opportunities for improvement are identified within the production area with a potential savings of 23%, which corresponds to EUR 40,534.00 and 190 tCO2, annually. It was found that the significant savings could be achieved by better managing the production lines and reducing operational hours from equipment, with no impact on productivity and no capital investment required. Further savings can be achieved through technical improvements requiring capital investments. All those improvements and savings make a significant contribution in accomplishing environmental targets set out by the FDF1 agreement

    The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products

    No full text
    Gluten-free products generally are not enriched/fortified and frequently are made from refined flour and/or starch. Such products have been found to provide lower amounts of total dietary fibre than their enriched/fortified gluten-containing counterparts. The objective of this study was to increase the level of total dietary fibre in gluten-free products by using extrusion technology and by incorporating a number of different fruits and vegetables, such as apple, beetroot, carrot, cranberry and gluten-free Teff flour cereal. The materials were added at the level of 30% into the gluten-free balanced formulation (control) made from rice flour, potato starch, corn starch, milk powder and soya flour. Different process conditions, such as water feed rate 12%, solid feed rate 15–25 kg/h, screw speed 200–350 rpm, barrel temperatures: 80 °C at feed entry and 80–150 °C at die exit were used. Pressure, material temperature and torque were monitored during extrusion runs. The relationships and interactions between raw ingredients, extrusion processing parameters and resulting extrudate nutritional and textural properties were investigated. The results of this study clearly show that extrusion technology has the potential to increase the levels of total dietary fibre in gluten-free products made from vegetables, fruits and gluten-free cereals

    Dietary iron intervention using a staple food product for improvement of iron status in female runners.

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Adequate nutrient intake is critically important for achieving optimal sports performance. Like all athletes, female runners require a nutritionally balanced diet to maintain daily activities and a successful training regime. This study investigates the effects of cereal product based dietary iron intervention on iron status of recreational female runners (n = 11; 32 ± 7yr; 239 ± 153 minutes exercise/week, of which 161 ± 150 minutes running activity/week; VO2max 38 ± 4 ml/kg/min)
    corecore